Math 702 Problem Set 6 due Friday 3/21/2014

Measurable sets and functions in Euclidean spaces are always meant to be Lebesgue measurable. A *full measure* set is one whose complement has measure zero.

Problem 1.

- (i) If $f : \mathbb{R} \to \mathbb{R}$ is measurable and $\varepsilon > 0$, prove that there is a continuous function $g : \mathbb{R} \to \mathbb{R}$ such that $m(\{x : f(x) \neq g(x)\}) \le \varepsilon$.
- (ii) Show by an example that there may not be such a g for $\varepsilon = 0$.

Problem 2. Suppose $f_n : [0, 1] \to \mathbb{R}$ is a sequence of measurable functions such that $f_n \to 0$ a.e. in [0, 1].

- (i) Show that there is a subsequence $\{f_{n_k}\}$ for which the series $\sum_{k=1}^{\infty} |f_{n_k}|$ converges a.e. in [0, 1].
- (ii) Can we find a subsequence $\{f_{n_k}\}$ for which $\sum_{k=1}^{\infty} |f_{n_k}|$ converges uniformly on a full measure subset of [0, 1]?

(Hint: Use Egoroff's theorem.)

Problem 3. Give an example of a monotone class \mathfrak{C} in \mathbb{R} such that

- (i) \mathfrak{C} is not a σ -algebra, and
- (ii) $E \in \mathfrak{C}$ implies $\mathbb{R} \setminus E \in \mathfrak{C}$, and
- (iii) C has infinitely many elements.

Problem 4. Recall that \mathfrak{B}_X is the Borel σ -algebra of the metric space X.

(i) Show that for any pair of metric spaces X and Y,

$$\mathfrak{B}_X \otimes \mathfrak{B}_Y \subset \mathfrak{B}_{X \times Y}.$$

(ii) If X is separable, prove that

$$\mathfrak{B}_X\otimes\mathfrak{B}_Y=\mathfrak{B}_{X\times Y}.$$

As a special case, for $\mathfrak{B}_d = \mathfrak{B}_{\mathbb{R}^d}$ we have the relation $\mathfrak{B}_d \otimes \mathfrak{B}_k = \mathfrak{B}_{d+k}$ once we identify the Cartesian product $\mathbb{R}^d \times \mathbb{R}^k$ with \mathbb{R}^{d+k} .

(Hint: For (i), show that the product of two Borel sets is Borel. For (ii), show that every open set in $X \times Y$ is a countable union of open rectangles.)

Problem 5. Investigate integrability of the following functions on the given product space:

$$f(x, y) = \frac{x^2 - y^2}{(x^2 + y^2)^2} \quad \text{on } [0, 1] \times [0, 1]$$
$$g(x, y) = \frac{xy}{(x^2 + y^2)^2} \quad \text{on } [-1, 1] \times [-1, 1].$$

Problem 6. Suppose f is integrable on [0, 1]. Show that the function $g(x) = \int_x^1 t^{-1} f(t) dt$ is integrable on [0, 1] and $\int_0^1 g = \int_0^1 f$.

Problem 7. (Bonus) Does there exist a full measure subset of \mathbb{R}^2 which contains no measurable rectangle $A \times A$ of positive measure?