Math 702 Problem Set 7

due Friday 3/28/2014

The symbol m_{k} denotes Lebesgue measure on \mathbb{R}^{k}.
Problem 1. The graph and undergraph of a measurable function $f: \mathbb{R} \rightarrow[0,+\infty)$ are respectively defined by

$$
\Gamma_{f}=\left\{(x, y) \in \mathbb{R}^{2}: y=f(x)\right\} \quad \text { and } \quad U_{f}=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq f(x)\right\}
$$

(i) Show that Γ_{f} is measurable and $m_{2}\left(\Gamma_{f}\right)=0$.
(ii) Show that U_{f} is measurable and $m_{2}\left(U_{f}\right)=\int_{-\infty}^{\infty} f(x) d x$.
(Hint: For measurability issues, look at the function $(x, y) \mapsto f(x)-y$. For computations, use Fubini-Tonelli.)

Problem 2. Let $f:(0,+\infty) \rightarrow(0,+\infty)$ be an orientation-reversing homeomorphism (so f is continuous and strictly decreasing, with $\lim _{x \rightarrow 0^{+}} f(x)=+\infty$ and $\lim _{x \rightarrow+\infty} f(x)=$ 0). Show that

$$
\int_{0}^{\infty} f(x) d x=\int_{0}^{\infty} f^{-1}(x) d x
$$

Problem 3. Verify that the function $\sin x / x$ is not Lebesgue integrable on $[0,+\infty)$. On the other hand, use the Fubini-Tonelli theorem and the relation

$$
\frac{1}{x}=\int_{0}^{\infty} e^{-x t} d t \quad(x>0)
$$

to show that

$$
\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

This is another illustration of the difference between Lebesgue integral and improper Riemann integral.

Problem 4. Let $\mathbb{S}^{k-1}=\left\{u \in \mathbb{R}^{k}:\|u\|=1\right\}$ be the unit sphere in \mathbb{R}^{k}. Identify the product $\mathbb{S}^{k-1} \times(0,+\infty)$ with $\mathbb{R}^{k} \backslash\{0\}$ by the homeomorphism $\phi:(u, r) \mapsto r u$. Define a Borel measure μ on \mathbb{S}^{k-1} by

$$
\mu(E)=k m_{k}(\phi(E \times(0,1))) .
$$

Show that for any positive Borel function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$,

$$
\int_{\mathbb{R}^{k}} f d m_{k}=\int_{0}^{\infty} \int_{\mathbb{S}^{k}} r^{k-1} f(r u) d \mu d r .
$$

Interpret this formula for $k=2$.

Problem 5. Recall that the sections of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are the functions $f_{x}, f^{y}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{x}(y)=f^{y}(x)=f(x, y) \quad \text { for all } x, y \in \mathbb{R}
$$

(i) If f_{x} is Borel measurable for all x and f^{y} is continuous for all y, show that f is Borel measurable.
(ii) If f_{x} is Lebesgue measurable for all $x \in \mathbb{Q}$ and f^{y} is continuous for a.e. y, show that f is Lebesgue measurable.

Problem 6. The Fourier transform of $f \in L^{1}(\mathbb{R})$ is defined by

$$
\hat{f}(\omega)=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x
$$

(i) Show that \hat{f} is a continuous function on \mathbb{R} and $\|\hat{f}\|_{\infty} \leq\|f\|_{1}$.
(ii) If $f>0$ everywhere, show that $|\hat{f}(\omega)|<\hat{f}(0)$ for all $\omega \neq 0$.
(iii) If $h=f * g$ (the convolution), prove that $\hat{h}=\hat{f} \hat{g}$.

