Math 702 Problem Set 8 due Friday 4/11/2014

In the following problems, (X, μ) is always a measure space,

$$||f||_p = \left(\int_X |f|^p \, d\mu\right)^{1/p} \qquad (0$$

and $L^p = L^p(\mu)$ is the space of all measurable $f : X \to \mathbb{C}$ for which $||f||_p < \infty$.

Problem 1. Let $f : X \to \mathbb{C}$ be measurable. Prove the following statements:

- (i) If $0 < r < p < s \le \infty$ and $f \in L^r \cap L^s$, then $f \in L^p$. In other words, the set $\{p \in (0, \infty] : f \in L^p\}$ is connected.
- (ii) If $0 < r < s \le \infty$ and $f \in L^r \cap L^s$, and if f is not a.e. equal to 0, the function $\varphi(p) = \log \|f\|_p^p$ is convex in the interval (r, s).

(Hint: For (i), consider the sets where |f| < 1 and $|f| \ge 1$. For (ii), take $x, y \in (r, s)$ and 0 < t < 1 and use Hölder's inequality for p = 1/t, q = 1/(1-t) to show $\varphi((1-t)x+ty) \le (1-t)\varphi(x) + t\varphi(y)$.)

Problem 2. Suppose $f : X \to \mathbb{C}$ is measurable and $f \in L^r$ for some $0 < r < \infty$. Prove the following statements about the behavior of $||f||_p$ for large and small p:

- (i) $\lim_{p\to\infty} ||f||_p = ||f||_\infty$ whether or not $||f||_\infty$ is finite.
- (ii) If $\mu(X) = 1$, then

$$\lim_{p \to 0} \|f\|_p = \exp\left(\int_X \log|f| \, d\mu\right)$$

if we define $\exp(-\infty) = 0$.

(Hint: For (ii), use Jensen's inequality for one direction, and $\log x \le x - 1$ together with $\lim_{p\to 0} (|f|^p - 1)/p = \log |f|$ for the other direction.)

Problem 3. Suppose $\mu(X) < \infty$, $f \in L^{\infty}(\mu)$, and $||f||_{\infty} > 0$. Define

$$\alpha_n = \int_X |f|^n d\mu, \qquad n = 1, 2, 3, \dots$$

Show that

$$\lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = \|f\|_{\infty}.$$

Problem 4. For each $0 , find a function in <math>L^p(\mathbb{R})$ that does not belong to $L^r(\mathbb{R})$ for any $r \ne p$.

2

Problem 5. The *essential range* of $f \in L^{\infty}(\mu)$ is the set R_f of points $z \in \mathbb{C}$ for which $\mu(\{x \in X : |f(x) - z| < \varepsilon\})$ is positive for every $\varepsilon > 0$. Show that R_f is compact. What relation can you establish between R_f and $||f||_{\infty}$?

Problem 6. A sequence $f_n : X \to \mathbb{C}$ of measurable functions is said to *converge in measure* to a measurable function $f : X \to \mathbb{C}$ if for every $\varepsilon > 0$,

$$\mu(\{x \in X : |f_n(x) - f(x)| > \varepsilon\}) \to 0 \quad \text{as} \quad n \to \infty.$$

Prove the following statements:

- (i) If $\mu(X) < \infty$ and $f_n \to f$ a.e., then $f_n \to f$ in measure.
- (ii) If $f_n \to f$ in $L^p(\mu)$ for some $1 \le p \le \infty$, then $f_n \to f$ in measure.
- (iii) If $f_n \to f$ in measure, some subsequence of f_n converges to f a.e.

Show that the converses of (i) and (ii) do not hold, so convergence in measure is weaker than both a.e. pointwise convergence and L^p convergence. (Hint: For (i), use Egoroff's theorem. For (iii), the Borel-Cantelli lemma is useful.)