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Lecture 1.

(1) A Riemann surface X is a connected complex manifold of dimension 1. This
means that X is a connected Hausdorff space, locally homeomorphic to R2,
which is equipped with a complex structure {(Ui, zi)}. Here each Ui is an
open subset of X, the union

⋃
Ui is X, each local coordinate zi : Ui → D is

a homeomorphism, and whenever Ui ∩ Uj 6= ∅ the change of coordinate
zj ◦ z−1

i : zi(Ui ∩Uj) → zj(Ui ∩Uj) is holomorphic in the usual sense.

In the above definition we have not assumed that X has a countable basis
for its topology. Surprisingly, this follows from the existence of a complex
structure on X (Rado’s Theorem).

(2) A map f : X → Y between Riemann surfaces is holomorphic if w ◦ f ◦ z−1

is a holomorphic map for each pair of local coordinates z on X and w on Y
for which this composition makes sense. We often denote this composition
by w = f (z). A holomorphic map f is called a biholomorphism or conformal
isomorphism if it is a homeomorphism, in which case f−1 is automatically
holomorphic.

(3) Examples of Riemann surfaces: The complex plane C, the unit disk D, the
Riemann sphere Ĉ, complex tori C/(aZ ⊕ bZ) with a/b /∈ R, open con-
nected subsets of Riemann surfaces such as the complement of a Cantor set
in C.

(4) The Uniformization Theorem: Every simply connected Riemann surface is
conformally isomorphic to Ĉ, C, or D.

(5) Classical form of Schwarz Lemma: If f : D → D is holomorphic and f (0) =
0, then | f ′(0)| ≤ 1. The equality | f ′(0)| = 1 holds iff f is a rigid rotation
around the origin.

(6) Corollary: If f : D(p, r) → D( f (p), R) is holomorphic, then | f ′(p)| ≤ R/r.

A more careful argument proves the same inequality whenever f maps
D(p, r) into any disk of radius R, no matter where its center is.

(7) Corollary (Liouville’s Theorem): Every bounded holomorphic function C →
C must be constant.
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The automorphism group Aut(X) of a Riemann surface X is the group of all
conformal isomorphisms X → X.

(8) Theorem:

Aut(Ĉ) = {z 7→ az + b
cz + d

: a, b, c, d ∈ C and ad− bc 6= 0} ∼= PSL2(C)

In particular, Aut(Ĉ) is a connected complex Lie group of dimension 3. It
has the topology of the product RP3 ×R3 (this follows, for example, from
the Iwasawa decomposition).

(9) Theorem:

Aut(C) = {z 7→ az + b : a, b ∈ C and a 6= 0}
Thus, Aut(C) can be identified with the subgroup of Aut(Ĉ) consisting of
the maps which fix the point at infinity. It follows that Aut(C) is a connected
complex Lie group of dimension 2, homeomorphic to the product C∗ ×C.

(10) Theorem:

Aut(D) = {z 7→ λ

(
z− a

1− az

)
: a ∈ D and λ ∈ C with |λ| = 1}

Thus, Aut(D) can be identified with the identity component of the sub-
group of Aut(Ĉ) consisting of the maps which commute with the reflection
z 7→ 1/z. In particular, Aut(D) is a connected real Lie group of dimension
3, homeomorphic to the solid torus D× S1.

(11) Theorem:

Aut(H) = {z 7→ az + b
cz + d

: a, b, c, d ∈ R and ad− bc > 0} ∼= PSL2(R)

Thus, Aut(H) can be identified with the identity component of the sub-
group of Aut(Ĉ) consisting of the maps which commute with the reflection
z 7→ z.

(12) The action of Aut(Ĉ) on Ĉ is simply 3-transitive. Similarly, the action of
Aut(C) on C is simply 2-transitive. The action of Aut(D) on D is transitive
but not simply transitive.

(13) Every non-identity σ ∈ Aut(Ĉ) has two fixed points counting multiplicities.
If σ has a double fixed point, it can be conjugated to the translation z 7→
z + 1. In this case we call it parabolic. If σ has two distinct fixed points, it can
be conjugated to the linear map z 7→ λz for some λ ∈ Cr {0, 1}. The pair
{λ, λ−1} is uniquely determined by σ. We call σ elliptic if |λ| = 1, hyperbolic
if λ ∈ R and |λ| 6= 1, and loxodromic otherwise.
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(14) An element σ ∈ Aut(Ĉ) can be thought of as a matrix in PSL2(C), so the
quantity τ = tr2(σ) is well-defined. A non-identity element σ is parabolic
if τ = 4, elliptic if τ ∈ [0, 4[, hyperbolic if τ ∈ ]4, +∞[, and loxodromic if
τ ∈ Cr [0, +∞[. The conjugacy class of σ in Aut(Ĉ) is uniquely determined
by τ.

(15) Let σ, ν be non-identity elements in Aut(Ĉ). If Fix(σ) = Fix(ν), then σ ◦ ν =
ν ◦ σ. Conversely, if σ ◦ ν = ν ◦ σ, then Fix(σ) = Fix(ν) unless σ and ν are
involutions, each interchanging the two fixed points of the other (such as
the commuting pair σ(z) = −z and ν(z) = 1/z).

(16) Corollary: Two non-identity elements of Aut(C) or Aut(D) ∼= Aut(H)
commute if and only if they have the same fixed point set in Ĉ.

(17) Corollary: Every abelian group Γ ⊂ Aut(H) is conjugate to a subgroup of

{z 7→ z + t}t∈R or {z 7→ etz}t∈R.

If in addition Γ is discrete, then it is conjugate to

{z 7→ z + n}n∈Z or {z 7→ λnz}n∈Z

for a unique λ ≥ 1.

Lecture 2.

(1) Review of covering space theory:

• Let X be a connected finite-dimensional manifold. Then there exists a
covering space p : X̃ → X, with X̃ simply-connected. X̃ is called the
universal covering of X. The pair X̃, p is unique up to isomorphisms of
coverings.

• The deck group of p : X̃ → X, denoted by ΓX, consists of all homeo-
morphisms γ : X̃ → X̃ which preserve each fiber of p, i.e., p ◦ γ = p.
Algebraically, ΓX is isomorphic to the fundamental group π1(X). Once
a base point x ∈ X is chosen, an isomorphism between ΓX and π1(X, x)
can be defined by sending γ ∈ ΓX to the homotopy class of the projec-
tion of any path joining some x̃ ∈ p−1(x) to γ(x̃).

• ΓX acts simply transitively on the fibers of p: If x̃, ỹ ∈ X̃ with p(x̃) =
p(ỹ), there exists a unique γ ∈ ΓX such that γ(x̃) = ỹ. In particular, if
γ ∈ ΓX has a fixed point, then γ = id.
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• ΓX acts evenly on X̃: Every point in X̃ has a neighborhood U such that
γ(U) ∩U = ∅ for all γ ∈ ΓX r {id}. In particular, ΓX is a discrete sub-
group of the group of homeomorphisms of X̃. The orbit space X̃/ΓX is
a Hausdorff manifold homeomorphic to X.

There is a one-to-one correspondence between subgroups of ΓX and cover-
ings of X as follows:

• Given a subgroup H ⊂ ΓX, the quotient Y = X̃/H is a covering of
X, with the covering map f : Y → X defined by sending the H-orbit
of x̃ ∈ X̃ to the ΓX-orbit of x̃. The natural projection X̃ → Y is the
universal covering, and H = ΓY. The deck group of f : Y → X is
isomorphic to N(H)/H, where

N(H) = {γ ∈ ΓX : γHγ−1 ⊂ H}
is the normalizer of H in ΓX.

• Conversely, given any covering f : Y → X, there exists a covering map
q : X̃ → Y such that f ◦ q = p. Thus, the subgroup H = ΓY ⊂ ΓX has
the property that X̃/H is homeomorphic to Y.

(2) Let X be any Riemann surface, with the topological universal covering p :
X̃ → X. Since p is a local homeomorphism, we can equip X̃ with the pull-
back complex structure so as to make X̃ into a Riemann surface, p into a
holomorphic map, and ΓX into a subgroup of Aut(X̃).

(3) Corollary: Every Riemann surface X can be represented as X̃/Γ, where X̃
is conformally isomorphic to Ĉ, C or D, and Γ is a subgroup of Aut(X̃)
isomorphic to π1(X) which acts evenly on X̃.

(4) A Riemann surface X is called spherical, Euclidean, or hyperbolic according
as its universal covering X̃ is conformally isomorphic to Ĉ, C or D. We
consider these caese separately:

• X̃ ∼= Ĉ. Since every automorphism of Ĉ has a fixed point, the only
subgroup of Aut(Ĉ) which acts evenly on Ĉ is the trivial group. It
follows that X ∼= Ĉ.

• X̃ ∼= C. The only fixed point free automorphisms of C are translations.
It is easily seen that the only subgroups of Aut(C) which act evenly
are the trivial group, or the group generated by a single translation
z 7→ z + a, or the group generated by two translations z 7→ z + a and
z 7→ z + b, with a/b /∈ R. It follows that X ∼= C, or X ∼= C∗, or X ∼= a
complex torus.



5

• X̃ ∼= D. All other Riemann surfaces therefore fall into this category.
In particular, a Riemann surface with non-abelian fundamental group
must be hyperbolic.

(5) Examples: The punctured disk D∗ is hyperbolic. Here a universal covering
map p : H → D∗ is defined by p(z) = exp(2πiz) and the deck group is
generated by the parabolic translation z 7→ z + 1. Similarly, every annulus
A(1, R) = {z : 1 < |z| < R} is hyperbolic. In this case, a universal covering
map p : H → A(1, R) is defined by

p(z) = z−
i
π log R = exp

(
− i

π
log R log z

)

and the corresponding deck group is generated by the hyperbolic dilation
z 7→ exp(2π2/ log R) z. These are the only examples of hyperbolic Riemann
surfaces with non-trivial abelian fundamental group.

(6) Example: The thrice punctured sphere Ĉr {a, b, c} is hyperbolic since its
fundamental group is non-abelian. If we normalize so that {a, b, c} = {0, 1, ∞},
an explicit universal covering map is given by the elliptic modular function
H → Cr {0, 1}.

(7) Let f : X → Y be a holomorphic map between Riemann surfaces. If X is
non-hyperbolic and Y is hyperbolic, then f is constant.

(8) Corollary (Picard’s Little Theorem): An entire function which omits two
values is constant.

(9) Corollary: A domain X ⊂ Ĉ is hyperbolic iff ĈrX has at least three points.

(10) Let z ∈ D, v ∈ TzD and choose ϕ ∈ Aut(D) so that ϕ(z) = 0. Define

‖v‖ = 2 |ϕ∗v|
This is independent of the choice of ϕ since by Schwarz Lemma every ψ ∈
Aut(D) with ψ(z) = 0 is of the form ψ = λϕ for some λ ∈ C with |λ| = 1.
Explicitly, take ϕ(w) = (w− z)/(1− zw) so that

ϕ∗v = ϕ′(z) v =
v

1− |z|2 .

Then

‖v‖ =
2

1− |z|2 |v|.
We write this metric as

ρD =
2

1− |z|2 |dz|.
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and call it the hyperbolic or Poincaré metric of the disk. By its very definition,
ρD is invariant under the action of Aut(D).

Pulling ρD back by the conformal isomorphism f : H → D defined by
f (z) = (i− z)/(i + z), we obtain the following formula for the hyperbolic
metric of H:

ρH =
1

Im(z)
|dz|.

The Gaussian curvature of ρH at z = x + iy ∈ H can be computed as

−∆ log ρH(z)
ρ2

H(z)
= y2

(
∂2

∂x2 +
∂2

∂y2

)
log y = y2 · −1

y2 = −1

Since the curvature is a conformal invariant, the same holds for ρD.

(11) Corollary: There exists a smooth Riemannian metric on the unit disk which
is invariant under the action of Aut(D). It is unique up to multiplication
by a positive constant, which can be chosen so as to normalize the Gaussian
curvature of this metric to −1.

(12) Here are some properties of ρD. We use the notations distD(·, ·) and BD(p, r)
for the hyperbolic distance and the hyperbolic ball centered at p of radius
r > 0. The same notations without the subscript D will denote the Eu-
clidean data.

• ρD is a conformal metric, i.e., at every point it is a positive multiple of
the Euclidean metric.

• ρD(z) → +∞ as |z| → 1. In fact, ρD(z) is asymptotic to 1/ dist(z, ∂D)
as z → ∂D.

• Any two points z1, z2 ∈ D can be joined by a unique minimal geo-
desic. This geodesic is part of the Euclidean circle passing through
z1, z2 which is orthogonal to ∂D.

• We have

distD(0, z) = log
(

1 + |z|
1− |z|

)
for all z ∈ D.

It follows that

BD(0, r) = B
(

0, tanh
( r

2

))

By applying elements of Aut(D), we conclude that every hyperbolic
ball is a Euclidean ball, perhaps with a different center.

• Closed balls in (D, distD) are compact. Hence (D, distD) is a complete
metric space.
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Lecture 3.
(1) Let X be a hyperbolic Riemann surface and p : X̃ → X be its universal

covering. The hyperbolic metric ρX̃ is invariant under the action of the deck
group ΓX ⊂ Aut(X̃), so it descends to a well-defined Riemannian metric ρX
on X. In local coordinates w = p(z), the metric ρX = ρX(w) |dw| satisfies

ρX(p(z)) =
ρX̃(z)
|p′(z)| .

For example,

ρX(p(z)) =
2

(1− |z|2) |p′(z)| if X̃ = D

and

ρX(p(z)) =
1

Im(z) |p′(z)| if X̃ = H.

Evidently the covering map p becomes a local isometry relative to hyper-
bolic metrics on D and X.

(2) Some properties of ρX:

• ρX is a conformal metric of constant curvature −1.

• Closed balls in (X, distX) are compact. Hence (X, distX) is a complete
metric space.

• Geodesics in X are the p-images of geodesics in D.

• Any pair w1, w2 ∈ X can be joined by at least one minimal geodesic,
obtained as follows: Choose z1 ∈ p−1(w1) and z2 ∈ p−1(w2) so that

distD(z1, z2) = distD(p−1(w1), p−1(w2)).

Then, the p-image of the geodesic joining z1 to z2 is a minimal geodesic
joining w1 to w2. In particular,

distX(w1, w2) = distD(p−1(w1), p−1(w2)).

(3) Example: Using the universal covering map p : H → D∗ defined by the
formula w = p(z) = exp(2πiz), we find that the hyperbolic metric on D∗
has the form

ρD∗ =
−1

|w| log |w| |dw|.

A neighborhood of the cusp in D∗ can be embedded isometrically in R3 as
the pseudo-sphere, i.e., the surface obtained by revolving the tractrix about
its axis. Note however that the entire punctured disk cannot be embedded
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isometrically in R3. In fact, according to Hilbert, no complete surface of
constant negative curvature can be embedded in R3 by a smooth isometry.

(4) Example: Using the universal covering map p : H → A(1, R) defined by
w = p(z) = z−i log R/π, we can compute the hyperbolic metric on A(1, R)
as

ρA(1,R) =
π

log R

|w| sin
(

π log |w|
log R

) |dw|.

(5) Let f : X → Y be a holomorphic map between hyperbolic Riemann sur-
faces. In local coordinates w = f (z), define

‖ f ′(z)‖ =
f ∗(ρY(w) |dw|)

ρX(z) |dz| =
ρY( f (z))

ρX(z)
| f ′(z)|.

Observe that unlike | f ′(z)| which depends on the choice of the coordinates,
the norm ‖ f ′(z)‖ is a well-defined function on X. Moreover,

• f is a local isometry iff ‖ f ′(z)‖ = 1 for all z ∈ X.

• ‖ f ′(z)v‖ρY = ‖ f ′(z)‖ · ‖v‖ρX whenever v ∈ TzX.

• In particular, if γ : [a, b] → X is a smooth curve, then

‖( f ◦ γ)′(t)‖ρY = ‖ f ′(γ(t))γ′(t)‖ρY = ‖ f ′(γ(t))‖ · ‖γ′(t)‖ρX ,

which implies

lengthY( f ◦ γ) ≤ sup
z∈γ[a,b]

‖ f ′(z)‖ · lengthX(γ).

• If f : X → Y and g : Y → Z are holomorphic maps between hyperbolic
Riemann surfaces, then

‖(g ◦ f )′(z)‖ = ‖g′( f (z))‖ · ‖ f ′(z)‖.

(6) Example: Let ϕ ∈ Aut(D). Then ‖ϕ′(z)‖ = 1 for all z ∈ D.

(7) Invariant form of Schwarz Lemma: If f : D → D is holomorphic, then
‖ f ′(z)‖ ≤ 1 for all z ∈ D. If equality holds at some z, then it holds every-
where and f ∈ Aut(D).

(8) Corollary: If f : D → D is holomorphic, then

| f ′(z)| ≤ 1− | f (z)|2
1− |z|2 for all z ∈ D

(9) Theorem of Schwarz-Pick: Let f : X → Y be a holomorphic map between
hyperbolic Riemann surfaces. Then ‖ f ′(z)‖ ≤ 1 for all z ∈ X. Moreover,
exactly one of the following must be the case:
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• The equality ‖ f ′(z)‖ = 1 holds for all z, f is a local isometry and a
covering map.

• The strict inequality ‖ f ′(z)‖ < 1 holds for all z, f is a contraction and
not a covering map. In this case, for every compact set K ⊂ X there
exists a constant 0 < c = c(K) < 1 such that

distY( f (z1), f (z2)) ≤ c distX(z1, z2) for all z1, z2 ∈ K

(10) Example: f : D → D defined by f (z) = zn is not a covering map, so it must
satisfy ‖ f ′(z)‖ < 1 for all z ∈ D. In fact,

‖ f ′(z)‖ =
n|z|n−1(1− |z|2)

1− |z|2n < 1.

Note however that ‖ f ′(z)‖ → 1 as |z| → 1. On the other hand, the same f
viewed as a map D∗ → D∗ is a covering, hence a local isometry. This time

‖ f ′(z)‖ =
n|z|n−1|z| log |z|
|z|n log |z|n = 1.

(11) Corollary: If X ( Y are hyperbolic Riemann surfaces, the inclusion ι : X ↪→
Y satisfies ‖ι′(z)‖ = ρY(z)/ρX(z) < 1 for all z ∈ X. In particular,

distY(z1, z2) < distX(z1, z2) for all z1, z2 ∈ X.

Note that ‖ι′(z)‖ → 0 as z → ∂X ∩Y.

Lecture 4.

(1) Let X and Y be Riemann surfaces. Denote by C(X, Y) the space of all con-
tinuous maps from X to Y. This space is endowed with the compact-open
topology T, generated by sets of the form

{ f ∈ C(X, Y) : f (K) ⊂ O},

where K runs through the compact subsets of X and O runs through the
open subsets of Y.

(2) The space C(X, Y) is metrizable. A metric which induces the topology T

can be constructed as follows. Let {Kj} be an exhaustion of X by a sequence
of compact subsets, that is

X =
∞⋃

j=1

Kj and Kj ⊂ int(Kj+1) for j = 1, 2, 3, . . .
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Choose any metric dY on Y compatible with its topology. For f , g ∈ C(X, Y)
define

dj( f , g) = min

{
1, sup

z∈Kj

dY( f (z), g(z))

}
j = 1, 2, 3, . . .

and

d( f , g) =
∞

∑
j=1

2−j dj( f , g).

It is easy to check that d is in fact a metric on C(X, Y), and that it is com-
patible with T. Furthermore, d( fn, f ) → 0 iff fn → f uniformly on every
compact subset of X. For this reason, T is also called the topology of local uni-
form convergence. In what follows, by convergence of a sequence we always
mean convergence in this topology, unless otherwise stated.

(3) A sequence fn ∈ C(X, Y) tends to infinity in Y if for every pair of compact
sets K ⊂ X and K′ ⊂ Y we have fn(K) ∩ K′ = ∅ for all large n.

The definition is non-vacuous only when Y is non-compact. Note that the
notion of tending to infinity depends heavily on the target surface Y. For
example, the sequence of hyperbolic disk automorphisms

fn(z) =
(1 + 2n) z + (1− 2n)
(1− 2n) z + (1 + 2n)

tends to infinity as a sequence of maps D → D, but converges locally uni-
formly to −1 as a sequence of maps D → C.

(4) A family F ⊂ C(X, Y) is normal if every sequence in F has either a conver-
gent subsequence or a subsequence which tends to infinity in Y.

(5) Normality is a local property: F ⊂ C(X, Y) is normal iff every z ∈ X has
a neighborhood U such that F|U ⊂ C(U, Y) is normal. This follows from a
standard diagonal argument.

(6) The problem of deciding whether a given family in C(X, Y) is normal can be
quite difficult. Fortunately, for families of holomorphic maps this problem
has a surprisingly neat answer. Let Hol(X, Y) denote the closed subspace
of C(X, Y) consisting of all holomorphic maps X → Y.

Montel’s Theorem: If Y is a hyperbolic Riemann surface, then Hol(X, Y) is
a normal family.

Here is the idea of the proof. We can assume X is hyperbolic since oth-
erwise Hol(X, Y) consists of constant functions and the result is trivial.
Choose a base point z0 ∈ X and a sequence fn ∈ Hol(X, Y). If some sub-
sequence { fni(z0)} eventually leaves every compact subset of Y, then one
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uses the theorem of Schwarz-Pick to show that { fni} tends to infinity in Y.
Otherwise, { fn(z0)} stays in a fixed compact subset of Y. In this case, one
shows that some subsequence of { fn} converges locally uniformly by prov-
ing the following more general result:

Lemma: Let X and Y be hyperbolic Riemann surfaces, and K ⊂ X and
K′ ⊂ Y be compact. Then

{ f ∈ Hol(X, Y) : f (K) ⊂ K′}
is a compact subset of Hol(X, Y).

The proof of the lemma mimics that of the Arzelà-Ascoli theorem, where
equicontinuity of the sequence follows (for free) from Schwarz-Pick.

(7) The second possibility in our definition of normality (tending to infinity
in Y) is often dropped in the classical literature. The reason is in the clas-
sical setting one considers families of meromorphic functions in a planar
domain where Y = Ĉ is compact. In this case, normality reduces to every
sequence in F having a convergent subsequence. Equivalently, it reduces to
pre-compactness, i.e., the closure F being a compact subset of Hol(X, Ĉ).

(8) Let Y ⊂ Ĉ be a hyperbolic domain and fn ∈ Hol(X, Y) tend to infinity in
Y. Then there is a w ∈ ∂Y and a subsequence { fni} which converges to w in
Hol(X, Ĉ).

(9) Classical form of Montel’s Theorem: Take three distinct points a, b, c ∈ Ĉ

and let Fa,b,c ⊂ Hol(X, Ĉ) consist of all f such that f (X) ⊂ Ĉr {a, b, c}.
Then Fa,b,c is normal. More precisely, every sequence in Fa,b,c has a subse-
quence which converges either to a holomorphic map X → Ĉr {a, b, c} or
to a constant map X → {a, b, c}.

(10) More generally, suppose A, B, C : X → Ĉ are holomorphic with disjoint
graphs. Let FA,B,C ⊂ Hol(X, Ĉ) consist of all f whose graph is disjoint from
those of A, B, C. Then FA,B,C is normal.

This follows from the previous result by noting that for each f ∈ FA,B,C,
the map

z 7→ ( f (z)− A(z)) (B(z)− C(z))
( f (z)− C(z)) (B(z)− A(z))

belongs to F0,1,∞.

Lecture 5.
(1) Let X be a Riemann surface and f : X → X be a holomorphic map. The

Fatou set F( f ) consists of all points in X with a neighborhood U such that the
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family { f ◦n|U : U → X}n≥1 is normal. The Julia set J( f ) is the complement
Xr F( f ).

(2) Examples: Consider the case X = Ĉ. Then J( f ) = ∂D if f (z) = zn (|n| > 1)
and J( f ) = ∅ or a point if f is an automorphism.

(3) J( f ) is closed and F( f ) is open. Either set can be empty. Every connected
component of F( f ) is called a Fatou component of f .

(4) J( f ), hence F( f ), is totally invariant, that is

z ∈ J( f ) ⇐⇒ f (z) ∈ J( f ).

As a result, J( f ) enjoys a great deal of self-similarity: If z ∈ J( f ) is not a
critical point of f , then there exist neighborhoods U of z and V of f (z) such
that f : U → V is a conformal isomorphism mapping U ∩ J( f ) homeomor-
phically to V ∩ J( f ).

(5) For any k ≥ 1, J( f ) = J( f ◦k), hence F( f ) = F( f ◦k).

(6) Recall that the multiplier of a p-cycle z0 7→ z1 7→ · · · 7→ zp = z0 is the quan-
tity λ = ( f ◦p)′(z0) ∈ C which is well-defined on a Riemann surface. The
cycle is attracting if |λ| < 1, super-attracting if λ = 0, repelling if |λ| > 1 and
indifferent (or neutral) if |λ| = 1. An indifferent cycle is rationally indifferent if
λ is a root of unity, and irrationally indifferent otherwise. A rationally indif-
ferent cycle is called parabolic if no iterate of f is the identity map (thus ∞ is
a parabolic fixed point for f (z) = z + 1 but not for f (z) = −z).

(7) Every repelling cycle is contained in J( f ).

(8) Every attracting cycle is contained in F( f ). More generally, suppose z0 7→
z1 7→ · · · 7→ zp = z0 is attracting and consider its basin of attraction U con-
sisting of all z ∈ X such that f ◦np(z) → zj for some j as n → ∞. Then U is
an open subset of F( f ).

(9) Every parabolic cycle is contained in J( f ).

We now turn to the case of the Riemann sphere. Throughout, f : Ĉ → Ĉ will
denote a rational map of degree at least 2.

(10) The Julia set J( f ) is non-empty.

(11) If U ⊂ Ĉ is open and U ∩ J( f ) 6= ∅, then the union
⋃

n≥0 f ◦n(U) misses at
most two points.

(12) The Julia set J( f ) is nowhere dense, or else J( f ) = Ĉ.

(13) The grand orbit of a point p ∈ Ĉ is the set

GO(p) = {z ∈ Ĉ : f ◦n(z) = f ◦m(p) for some n, m ≥ 0}.
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The point p is called exceptional if GO(p) is a finite set. The set of all excep-
tional points of f is denoted by E( f ).

As an example, ∞ ∈ E( f ) whenever f is a polynomial, and E( f ) = {0, ∞}
whenever f (z) = zn, n ∈ Zr {−1, 0, 1}. The next result shows that these
examples are quite general.

(14) The exceptional set E( f ) has at most two points, which are super-attracting.
If E( f ) 6= ∅, then f is conformally conjugate either to a polynomial or to
the map z 7→ zn.

(15) If z ∈ J( f ) and U is a small neighborhood of z, then
⋃

n≥0 f ◦n(U) = Ĉr
E( f ) (in particular, the union does not depend on z or U).

(16) Corollary: If z ∈ J( f ), the set of iterated preimages of z is dense in J( f ).

(17) Corollary: The Julia set J( f ) is perfect (i.e., it is compact with no isolated
point).

(18) For a generic choice of z ∈ J( f ), the forward orbit of z is dense in J( f ).

(19) Either J( f ) is connected or it has uncountably many connected components.

Lecture 6.

(1) A map f : X → Y between topological surfaces is proper if the preimage of
every compact set is compact. Equivalently, if { f (xn)} tends to infinity in Y
whenever {xn} tends to infinity in X.

A proper holomorphic map f : X → Y between Riemann surfaces has
a well-defined finite mapping degree, that is, there exists an integer d ≥ 1
such that

∑
x∈ f−1(y)

deg( f , x) = d for all y ∈ Y.

The integer d is denoted by deg( f ).

(2) A map f : X → Y between topological surfaces is a branched covering if every
y ∈ Y has a small disk neighborhood V such that the preimage of (V, y) is
the disjoint union of pointed disks (Ui, xi), with f : (Ui, xi) → (V, y) acting
as a power. This means there are homeomorphisms φ : (Ui, xi) → (D, 0)
and ψ : (V, y) → (D, 0) such that (ψ ◦ f ◦ φ−1)(z) = zk for some integer
k ≥ 1. The integer k is called the local degree of f at xi and is denoted by
deg( f , xi). It is easy to check that a branched covering has a well-defined
mapping degree which may be finite or infinite.
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(3) A non-constant holomorphic map between Riemann surfaces is proper if
and only if it is a finite degree branched covering.

(4) Corollary: A proper holomorphic map between Riemann surfaces with no
critical points is a covering map.

(5) Riemann-Hurwitz Formula: Let f : X → Y be a non-constant proper holo-
morphic map. Then

deg( f ) · χ(Y)− χ(X) = ∑
x∈X

[ deg( f , x)− 1 ].

Note that the right term is actually a finite sum. It is the number of critical
points of f counting multiplicities.

In what follows we consider examples of smooth Julia sets:

(6) If f (z) = zd with d ≥ 2, then J( f ) = S1 = ∂D.

(7) More generally, suppose f is a degree d ≥ 2 Blaschke product

f (z) = λ z
d−1

∏
j=1

(
z− aj

1− ajz

)
,

where |λ| = 1 and |aj| < 1 for all j (the case f (z) = zd corresponds to
λ = 1 and aj = 0). Then f (0) = 0, f (D) ⊂ D and f (S1) = S1. It easily
follows from Schwarz Lemma that f ◦n → 0 locally uniformly in D. Since f
commutes with the reflection z 7→ 1/z, it also follows that f ◦n → ∞ locally
uniformly outside D. Hence, J( f ) = S1.

(8) Let f be a finite Blaschke product as above. Since J( f ) = S1, the forward
orbit of a generic z ∈ S1 is dense on S1. But much more is true: the Lebesgue
measure on the circle is an invariant ergodic measure for f : S1 → S1. In
particular, almost every orbit of f on S1 is evenly distributed with respect
to Lebesgue measure.

Proof of invariance: Let ϕ : S1 → R be continuous and Φ : D → R be its
unique harmonic extension. Then Φ ◦ f is harmonic also, hence

∫

S1
ϕ ◦ f =

∫

S1
Φ ◦ f = (Φ ◦ f )(0) = Φ(0) =

∫

S1
ϕ

by the mean value property.

Proof of ergodicity: Let E ⊂ S1 be f -invariant and Φ : D → R be the
Poisson integral of the characteristic function χE. Then Φ ◦ f is the Pois-
son integral of χE ◦ f . By invariance, Φ = Φ ◦ f in D. It follows that
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Φ = limn→∞ Φ ◦ f ◦n = Φ(0), which means Φ is constant. Hence χE which
coincides a.e. with the radial limit of Φ, must be constant a.e. .

(9) Now consider the quadratic Chebyshev map f (z) = z2− 2, first studied in the
dynamical context by Ulam and von-Neumann. Then J( f ) = [−2, 2]. This
can be verified directly using the fact that f−1([−2, 2]) = [−2, 2]. Alterna-
tively, observe that the degree 2 rational function h(w) = w + w−1 (known
as the Joukowski map) semi-conjugates f to the squaring map s(w) = w2:

h ◦ s = f ◦ h.

In other words, f is a quotient of s. Since h maps both D and ĈrD confor-
mally onto Ĉr [−2, 2], it follows that Ĉr [−2, 2] is the basin of infinity of f
and J( f ) = [−2, 2].

The existence of the semi-conjugacy h has interesting consequences. For
example, since the normalized Lebesgue measure 1

2π dθ on S1 is an invariant
ergodic measure for s, the push-forward measure dµ = h∗( 1

2π dθ) is invari-
ant and ergodic for the action of f on its Julia set [−2, 2]. Since x = h(eiθ) =
2 cos(θ), if [a, b] ⊂ [−2, 2], we have

h−1[a, b] = [arccos( b
2), arccos( a

2)] ∪ [− arccos( a
2),− arccos( b

2)].

It follows that

µ[a, b] = 2 · 1
2π

· (arccos( a
2)− arccos( b

2)) =
1
π

∫ b

a

dx√
4− x2

,

which gives

dµ =
1
π

dx√
4− x2

.

Now, ergodicity of µ implies that for any measurable set E ⊂ [−2, 2],

lim
n→+∞

1
n

#{0 ≤ k ≤ n− 1 : f ◦k(x) ∈ E} = µ(E)

for µ-a.e. (hence Lebesgue a.e.) x ∈ [−2, 2]. Since µ is more concentrated
near the end points ±2 than the middle of the interval [−2, 2], it follows
that a typical orbit in the Julia set of f visits the ends of [−2, 2] much more
frequent than its middle.

(10) Euclidean circles or circular arcs on the sphere are the only examples of 1-
dimensional smooth Julia sets. According to D. H. Hamilton, if the Julia set
of a rational map is a Jordan curve (resp. a simple arc), then either it is a
Euclidean circle (resp. circular arc) or else has Hausdorff dimension > 1,
hence it is non-smooth.
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Lecture 7.
Following Lattès, we construct rational maps f of degree ≥ 2 with J( f ) = Ĉ.

(1) Take the lattice Λ = Z⊕ τZ ⊂ C generated by 1 and some τ ∈ H, and
consider the torus Tτ = C/Λ. Let σ be the involution z 7→ −z on Tτ. Then
the quotient X = Tτ/σ is a compact orientable topological surface and
the canonical projection p : Tτ → X is a degree 2 branched covering with
branch points at 0, 1/2, τ/2, (1 + τ)2 corresponding to the fixed points of σ.
It is easy to see that X inherits a Riemann surface structure with respect to
which p is holomorphic. By the Riemann-Hurwitz Formula,

2 χ(X)− χ(Tτ) = 4 =⇒ χ(X) = 2,

so X is biholomorphic to the Riemann sphere Ĉ. An explicit realization of
p : Tτ → Ĉ is provided by the classical Weierstrass ℘-function. This is the
unique meromorphic function on C with poles on Λ which satisfies

℘(z + 1) = ℘(z + τ) = ℘(z)
℘(−z) = ℘(z)

℘(z) = z−2 + O(1) near z = 0.

Explicitly,

℘(z) =
1
z2 + ∑

ω∈Λr{0}

[
1

(z + ω)2 −
1

ω2

]
.

(2) Now consider the endomorphism g : Tτ → Tτ defined by g(z) = nz for an
integer n ≥ 2. Then g is a holomorphic covering map of degree n2 which
uniformly expands the Euclidean metric on Tτ. Since all points of the form

r
np − 1

+
s

np − 1
τ (r, s ∈ Z)

are fixed under g◦p, it follows that the periodic orbits of g are dense in Tτ.
Since all these orbits are repelling, we have J(g) = Tτ. As g commutes with
the involution σ, it descends to a well-defined holomorphic map f : Ĉ → Ĉ

of the same degree n2. Moreover, J( f ) = Ĉ since p maps the repelling cycles
of g to repelling cycles of f . We call f constructed this way a Lattès map.

(3) Thus, for an arbitrary lattice we can construct Lattès maps of degree ≥ 4.
For special lattices, we can obtain Lattès maps of lower degrees. For ex-
ample, take Λ to be the lattice of Gaussian integers Z ⊕ iZ, and define
g : Ti → Ti by g(z) = (1 + i)z. Then g is a holomorphic expanding map of
degree |1 + i|2 = 2, and a brief inspection shows that J(g) = Ti. It follows
that the induced map f : Ĉ → Ĉ is rational of degree 2 with J( f ) = Ĉ.
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To find the explicit formula for f , normalize the projection p so that p(0) =
∞, p(1/2) = 1 and p((1 + i)/2) = 0. The automorphism z 7→ iz of Ti fixes
0 and (1 + i)/2 and interchanges 1/2 and i/2. It descends to an involution
of Ĉ which fixes 0 and ∞ and interchanges 1 and p(i/2). This involution is
necessarily w 7→ −w, so p(i/2) = −1. Thus

critical points of p : 0
1
2

i
2

1 + i
2

↓ ↓ ↓ ↓
critical value of p : ∞ 1 −1 0

Under g, the critical points of p map as
1
2

and
i
2
7→ 1 + i

2
7→ 0 7→ 0,

so under f , the critical values of p map as

±1 7→ 0 7→ ∞ 7→ ∞.

It easily follows that the quadratic rational map f must have the form f (w) =
λ(w− w−1). To determine λ, use p ◦ g = f ◦ p and the fact that p(z) ∼ z−2

near z = 0 to obtain
1

(1 + i)2z2 ∼
λ

z2 near z = 0.

Thus λ = 1/(2i) and f (w) = 1/(2i)(w− w−1). Note in particular that the
critical values of p are precisely the postcritical points of f ; of course this
could have been checked directly using the relation p ◦ g = f ◦ p.

(4) The endomorphism g(z) = (1 + i)z of the torus Ti has an obvious invariant
ergodic measure, namely the Lebesgue area form |dz|2. It follows that the
push-forward dµ = p∗(|dz|2) is an invariant ergodic measure for the Lattès
map f (w) = 1/(2i)(w−w−1). To find the explicit formula for this measure,
note that the elliptic function w = p(z) satisfies the differential equation

(
dw
dz

)2

= 4w3 − g2w− g3,

where the constants g2, g3 are determined by the fact that 0,±1 are the finite
critical values of w. Thus(

dw
dz

)2

= 4w(w− 1)(w + 1),

so

|dz|2 =
|dw|2

4|w| |w− 1| |w + 1| .
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Since the map p has degree 2, it follows that

dµ =
|dw|2

2 |w| |w− 1| |w + 1| .

Note that µ is a smooth measure except at the four critical values of p which
are the postcritical points of f . Ergodicity of µ shows that a typical orbit of f
visits neighborhoods of these four points much more frequently than neigh-
borhoods of the same spherical size of other points on the sphere. Thus, a
finite initial segment of a typical orbit appears to be highly concentrated
near the four postcritical points.

Lecture 8.
(1) Let X be a hyperbolic Riemann surface and f : X → X be holomorphic.

Then J( f ) = ∅. In particular, f has no repelling or parabolic cycles.

(2) Theorem: Let X be a hyperbolic Riemann surface and f : X → X be a
holomorphic map. Then exactly one of the following must be the case:

(A) Attracting. f has a unique fixed point z∗ = f (z∗) and the sequence
{ f ◦n} converges locally uniformly to the constant map X → {z∗}.

(E) Escape. The sequence { f ◦n} tends to infinity in X.

(F) Finite order. There exists a k ≥ 1 such that f ◦k = idX.

(I) Irrational rotation. X is conformally isomorphic to D, D∗ or an annulus
A(1, R), and f acts as an irrational rotation on it.

Here is the rough outline of the proof. Fix a base point z0 ∈ X and let
zn = f ◦n(z0).

• Suppose {zn} eventually leaves every compact subset of X. Then, by
Schwarz-Pick, { f ◦n} tends to infinity in X. This is the case (E).

• Otherwise, the orbit {zn} is recurrent, that is, there is a compact set K
and an increasing sequence of positive integers ni such that zni ∈ K.
We distinguish two sub-cases:

•• ‖ f ′(z)‖ < 1 for all z ∈ X. Then, distX(zn, zn+1) is decreasing in
n and shrinks by a definite factor at the moments ni when the
orbit hits K. Hence distX(zn, zn+1) → 0. Any accumulation point
z∗ ∈ K of {zni} is thus a fixed point. It is readily seen that z∗ is
attracting and { f ◦n} converges to z∗ uniformly on every compact
subset of X. This is the case (A).

•• ‖ f ′(z)‖ = 1 for all z ∈ X so that f is a covering map. We distin-
guish two further sub-cases:
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• • • π1(X) is abelian. Then X is isomorphic to D, D∗ or some
annulus A(1, R). Using recurrence, it follows that in the first
two cases the action of f is conformally conjugate to a rigid
rotation z 7→ λz with |λ| = 1. In the third case, f is conjugate
to either such a rotation or the inversion z 7→ R/z. These
yield the cases (F) or (I).

• • • π1(X) is non-abelian. Lift each iterate f ◦ni+1−ni to an auto-
morphism gi of the universal covering D. By postcompos-
ing each gi with an element of the deck group ΓX we can
guarantee, using Montel, that {gi} has a subsequence which
converges to a holomorphic map D → D. The assumption
that ΓX is non-abelian implies that

End(ΓX) = {σ ∈ Aut(D) : σΓXσ−1 ⊂ ΓX}
is discrete. Since gi ∈ End(ΓX), it follows that gi = gj for
some i 6= j. Hence two distinct iterates of f coincide, which
implies some iterate of f is the identity map. This is the case
(F).

(3) Corollary: A holomorphic self-map of a hyperbolic Riemann surface with
two or more periodic points must be a finite order automorphism.

Lecture 9.

Throughout we assume f ∈ Ratd with d ≥ 2.

(1) Local fixed point theory: Let f (z0) = z0 and f ′(z0) = λ.

• If |λ| 6= 0, 1, there exists a local biholomorphism ϕ defined near z0,
called the Koenigs coordinate, such that (ϕ ◦ f ◦ ϕ−1)(z) = λz.

• If λ = 0 and k ≥ 2 is the local degree of f at z0, there exists a local
biholomorphism ϕ defined near z0, called the Böttcher coordinate, such
that (ϕ ◦ f ◦ ϕ−1)(z) = zk.

• If λ = 1 and k + 1 ≥ 2 is the local degree of f − id at z0, then there are k
disjoint simply-connected domains Πi, such that z0 ∈ ∂Πi and f (Πi) ⊂
Πi ∪ {z0}, with the property that f ◦n → z0 locally uniformly in each
Πi as n → ∞. Each Πi is called an attracting petal for the parabolic
fixed point z0. There are conformal isomorphisms ϕi mapping Πi onto
the right half-plane, called the Leau-Fatou coordinates, such that (ϕ ◦ f ◦
ϕ−1)(z) = z + 1.
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• If λ 6= 1 but λq = 1 for a smallest integer q ≥ 2, then the iterate f ◦q has
a parabolic fixed point of multiplier 1 at z0. The local degree of f ◦q − id
at z0 is always of the form mq + 1 for some integer m ≥ 1, hence there
are mq attracting petals for f ◦q. Under the action of f , these attracting
petals fall into m cycles of length q each.

The study of the local dynamics of f near a (super)attracting, repelling,
or parabolic p-cycle can be reduced to the above cases by considering the
iterate f ◦p.

(2) The connected component U of F( f ) containing a (super)attracting fixed
point z0 is called the immediate basin of attraction of z0. In the attracting
case 0 < |λ| < 1, the Koenigs coordinate extends to a holomorphic map
ϕ : U → C by setting ϕ(z) := λ−n ϕ( f ◦n(z)) for large enough n (depending
on z). The extended Koenigs coordinate is always ∞-to-1 and surjective.

The immediate basin of a (super)attracting cycle z0 7→ z1 7→ · · · 7→ zp =
z0 is defined as the union of the immediate basins of the zi under the iterate
f ◦p. It is the disjoint union of p components of F( f ).

(3) Similarly, let z0 be a parabolic fixed point of multiplier 1 and attracting
petals Πi, 1 ≤ i ≤ k. The connected components Ui of F( f ) containing
Πi are called the parabolic basins of z0. The Leau-Fatou coordinates which
are originally defined in the Πi extend to holomorphic maps ϕ : Ui → C

by setting ϕ(z) := ϕ( f ◦n(z))− n for large enough n (depending on z). The
extended Leau-Fatou coordinates are also ∞-to-1 and surjective.

Now suppose λ 6= 1 and λq = 1 for a smallest integer q ≥ 2. For a
parabolic fixed point z0 of multiplier λ, let as above m ≥ 1 be the local
degree of f ◦q − id at z0. Then the parabolic basins of z0 under f are defined
as the mq parabolic basins of z0 under f ◦q. For a parabolic cycle z0 7→ z1 7→
· · · 7→ zp = z0 of multiplier λ, the parabolic basins are defined as the union
of the parabolic basins of the zi under the iterate f ◦p. They consist of mpq
components of F( f ), where mq + 1 is the local degree of f ◦pq − id at any of
the zi.

(4) Fatou-Sullivan’s classification of periodic Fatou components: Let U = f (U)
be an invariant Fatou component of f ∈ Ratd, d ≥ 2. Then U must be one
of the following:

• the immediate basin of attraction of a (super)attracting fixed point in
U.

• a parabolic basin for a parabolic fixed point on ∂U with multiplier 1.

• a Siegel disk.
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• a Herman ring.

The fact that the last two cases can actually occur follows from the work
of Siegel, Arnold and Herman.

The proof is based on the classification theorem for holomorphic self-
maps of hyperbolic Riemann surfaces. The cases of finite order automor-
phisms and irrational rotations on the punctured disk are easily ruled out,
so it remains to show that the escape case is associated to a parabolic basin
for a parabolic fixed point of multiplier 1. This follows from the following
two results:

(5) Lemma: Suppose f ∈ Ratd, d ≥ 2, U ⊂ Ĉ is hyperbolic, f (U) ⊂ U and
every orbit in U escapes. Then there is a fixed point z∗ = f (z∗) ∈ ∂U such
that f ◦n → z∗ in Hol(U, Ĉ).

(6) Snail Lemma: Let f be a holomorphic map defined in a neighborhood V
of the fixed point 0 = f (0). Let γ : [0, +∞[→ V r {0} be a path such that
limt→+∞ γ(t) = 0 and f (γ(t)) = γ(t + 1) for all t ≥ 0. Then | f ′(0)| < 1 or
else f ′(0) = 1.

Lecture 10.
As before, assume f ∈ Ratd for some d ≥ 2.

(1) Theorem: The immediate basin of attraction of a (super)attracting cycle of
f contains a critical point.

It suffices to address the case of an attracting fixed point z0 = f (z0) with
multiplier λ 6= 0. Let U denote the immediate basin of attraction of z0.

Proof 1. Assuming U contains no critical point, f : U → U will be a proper
local homeomorphism, hence a (finite-degree) covering map. As such, it
will be a local isometry by Schwarz-Pick. Hence |λ| = ‖ f ′(z0)‖ = 1, which
is a contradiction.

Proof 2. Consider the extended Koenigs coordinate ϕ : U → C. Evidently z
is a critical point of ϕ if and only if f ◦k(z) is a critical point of f for some k ≥
0. Assuming U contains no critical point of f , it follows that ϕ has no critical
point in U either. It is easy to check that ϕ has the curve-lifting property,
hence must be (an infinite-degree) covering. This is a contradiction since
the hyperbolic surface U cannot cover the Euclidean surface C.

Proof 3. Suppose U has no critical point of f . Let D ⊂ U be a small disk
neighborhood of z0. Since D is simply-connected and contains no critical
value of f ◦n for all n, there is a holomorphic branch gn : D → U of the
inverse of f ◦n with gn(z0) = z0. The family {gn} is normal by Montel,
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since it takes values in a hyperbolic surface. But this is impossible since
g′n(z0) = λ−n → ∞.

(2) One can prove slightly more: Every immediate basin of attraction contains a
critical point whose forward orbit converges to the attracting cycle without
hitting it directly. This follows from the second proof by considering the
map

ϕ : Ur
⋃

n≥0

f−n(z0) → C∗.

(3) Theorem: Every parabolic basin of f contains a critical point.

Again, it suffices to address the case of a parabolic basin U of a fixed point
z0 = f (z0) with multiplier λ = 1. Assuming U contains no critical point of
f , the extended Leau-Fatou coordinate ϕ : U → C is a covering map by an
argument similar to the second proof above. This is a contradiction since U
is hyperbolic.

(4) Corollary: f has at most 2d− 2 attracting or parabolic cycles.

In fact, f has at most 2d − 2 non-repelling cycles. This was conjectured
by Fatou and proved by Shishikura in 1986 using quasiconformal surgery.
Here we prove a slightly weaker version:

(5) Theorem. f has at most 6d− 6 non-repelling cycles.

It suffices to show that f has at most 4d− 4 neutral cycles with multiplier
6= 1. This is done by constructing a perturbation of f which renders at least
half of these cycles attracting.

Write f = P/Q, where P and Q are co-prime polynomials. Consider the
holomorphic 1-parameter family of rational maps

ft(z) :=
(1− t)P(z) + tzd

(1− t)Q(z) + t
(t ∈ C)

with f0 = f and f1(z) = zd. For all but finitely many choices of t, the map
ft has degree d. Denote by A this finite set of exceptional parameters.

Let ζ be an indifferent point of f of period p and multiplier λ 6= 1. Con-
sider the equation f ◦p

t (z)− z = 0 near the solution (z, t) = (ζ, 0). Since

∂

∂z

∣∣∣
(z,t)=(ζ,0)

( f ◦p
t (z)− z) = λ− 1 6= 0,

the implicit function theorem shows that there is a holomorphic function
ζ(t) defined in a neighborhood N of t = 0 such that ζ(0) = ζ and ζ(t) is
periodic of period p under ft. Let λ(t) = ( f ◦p

t )′(ζ(t)) be the corresponding
multiplier. We claim that λ(t) is not constant in N. Otherwise, λ(t) ≡ λ
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throughout N. Take a smooth path in Cr A connecting t = 0 to t = 1
and note that by a similar application of the implicit function theorem the
periodic point ζ(t) can be analytically continued along this path and the
multiplier λ(t) will remain constant. At the endpoint t = 1, it follows that
the map f1(z) = zd has a cycle of multiplier λ, which is a contradiction since
all cycles of f1 are repelling or super-attracting. Thus λ(t) is not constant. It
follows that there is a set of directions E ⊂ S1 of length 1/2, such that

|λ(εt)| < 1 if t ∈ E and ε > 0 is small

In fact, E is easily seen to be the union of k equally spaced open arcs of
length 1/(2k) each, where k ≥ 1 is the local degree of λ(t) at t = 0.

Now let ζ1, . . . , ζm be points selected from distinct neutral cycles of mul-
tiplier 6= 1 for f = f0. Applying the above argument to each ζ j, we obtain
periodic points ζ j(t) for ft of multiplier λj(t), and sets of directions Ej ⊂ S1

of length 1/2 such that

|λj(εt)| < 1 if t ∈ Ej and ε > 0 is small.

Since ∫

S1

m

∑
j=1

χEj =
m

∑
j=1

∫

S1
χEj =

m
2

,

It follows that ∑m
j=1 χEj(t) ≥ m/2 for some t ∈ S1. In other words, t belongs

to at least m/2 of the sets Ej. This means for small ε > 0, at least half
of the periodic points ζ j(εt) of fεt are attracting. Hence m/2 ≤ 2d − 2, or
m ≤ 4d− 4.

(6) Theorem: Repelling cycles of f are dense in J( f ).

Take any z0 ∈ J( f ) which is not fixed and is not a critical value. Let
{w1, . . . , wd} be the set of preimages of z0. For any small disk neighborhood
D of z0 there are disjoint neighborhoods Dj of wj and univalent branches
gj : D → Dj of f−1. The family { f ◦n|D} is not normal. Since the functions
A = id, B = g1, C = g2 have disjoint graphs, it follows from Montel that at
least one of the equations f ◦n(z) = A(z) or B(z) or C(z) has a solution in
n ≥ 1 and z ∈ D. Hence f ◦n or f ◦n+1 has a fixed point in D. Thus periodic
points are dense in J( f ). Since there are only finitely many non-repelling
cycles of f , the Julia set J( f ) must be the closure of repelling cycles.

Lecture 11.
(1) Rational maps of degree two or more exhibit both expanding and contract-

ing behaviors. Let f ∈ Ratd with d ≥ 2. Then f ◦n has 2dn − 2 critical points
near which the spherical metric σ = 2|dz|/(1 + |z|2) is highly contracted.
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On the other hand, if ‖ f ′(z)‖σ = σ( f (z))| f ′(z)|/σ(z) is the spherical norm
of the derivative, we have

∫

Ĉ
( f ◦n)∗σ2 =

∫

Ĉ
‖( f ◦n)′‖2

σ σ2 = dn
∫

Ĉ
σ2 = 4πdn,

which shows on average ‖( f ◦n)′‖σ grows exponentially fast.

(2) Given f ∈ Ratd with d ≥ 2, let C( f ) denote the set of critical points of f .
Define the postcritical set P( f ) as

P( f ) =
⋃

c∈C( f )

{ f (c), f ◦2(c), f ◦3(c), . . .}.

Here are some basic properties:

• P( f ) is non-empty and compact.
• f (P( f )) ⊂ P( f ).
• P( f ) = P( f ◦k) for every k ≥ 1.
• P( f ) is the smallest compact subset of Ĉ which contains all the critical

values of f ◦n for all n ≥ 1.

The last property shows that on every topological disk disjoint from P( f ),
all the dn inverse branches of f ◦n are single-valued holomorphic functions.

(3) Suppose f ∈ Ratd with d ≥ 2, and #P( f ) ≤ 2. Then f is conjugate to the
map z 7→ zd or z 7→ z−d (in particular #P( f ) = 2).

(4) Let f ∈ Ratd with d ≥ 2, and #P( f ) ≥ 3. Let ρ denote the hyperbolic metric
on (each component of) the complement Ĉr P( f ). If both z and f (z) are in
Ĉr P( f ), then ‖ f ′(z)‖ρ ≥ 1.

(5) Let f ∈ Ratd with d ≥ 2, and #P( f ) ≥ 3. Define ρ as above, and assume
that the forward orbit of z ∈ J( f ) never hits P( f ). Then ‖( f ◦n)′(z)‖ρ → ∞
as n → ∞.

(6) Corollary: Let f ∈ Ratd with d ≥ 2. Then P( f ) contains the attracting,
parabolic, and Cremer cycles, as well as the boundaries of Siegel disks and
Herman rings of f .

Lecture 12.
Throughout we assume f ∈ Ratd with d ≥ 2.

(1) f is expanding (on its Julia set) if there exists a conformal metric ρ = ρ(z)|dz|
defined in a neighborhood of J( f ) and some λ > 1 such that

‖ f ′(z)‖ρ > λ for all z ∈ J( f ).
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(2) Theorem: The following conditions are equivalent:

(i) f is expanding.
(ii) For any conformal metric ρ defined near the Julia set, there exist C > 0

and λ > 1 such that ‖( f ◦n)′(z)‖ρ > Cλn for all n ≥ 1 and all z ∈ J( f ).
(iii) Some finite iterate f ◦k expands the spherical metric σ on the Julia set,

i.e., there exists λ > 1 such that ‖( f ◦k)′(z)‖σ > λ for all z ∈ J( f ).
(iv) There are no critical points of f in J( f ) and all orbits in F( f ) tend to

attracting cycles.
(v) The orbit of every critical point of f tends to an attracting cycle.

(vi) P( f ) ∩ J( f ) = ∅.

(3) Corollary: An expanding map has no indifferent cycles or Herman rings.

(4) Corollary: A quadratic polynomial with an attracting cycle in the plane is
expanding.

(5) A central conjecture in holomorphic dynamics is that expanding rational
(resp. polynomial) maps of degree d ≥ 2 are dense in Ratd (resp. Pold).
This would follow from the conjecture that structurally stable rational maps
are expanding, since the former class is known to be dense by the work of
Mañe-Sad-Sullivan.

Lecture 13.

(1) Classical form of Köebe Distortion Theorem: Let f : D → C be univalent,
with f ′(0) = 1. Then

1− r
(1 + r)3 ≤ | f ′(z)| ≤ 1 + r

(1− r)3 if |z| ≤ r < 1.

It follows that if f : D(p, ε) → C is univalent and r < 1, then the distortion
of f on the smaller disk D(p, rε) defined by

sup
{ | f ′(z)|
| f ′(w)| : z, w ∈ D(p, rε)

}

is bounded by a constant C(r) > 0 independent of f . Thus, f distorts arc-
lengths and areas in D(p, rε) by a factor which only depends on r.

(2) Invariant form of Köebe Distortion Theorem: Let U ( C be a simply-
connected domain, K ⊂ U be compact, and d be the hyperbolic diameter
of K in U. Then, for every univalent function f : U → C,

sup
{ | f ′(z)|
| f ′(w)| : z, w ∈ K

}
≤ e4d.
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(3) Lebesgue Density Theorem: Let E ⊂ C be measurable. Then

lim
r→0

area(D(p, r) ∩ E)
area(D(p, r))

= χE(p) for almost every p ∈ Ĉ.

In particular, if area(E) > 0, then almost every p ∈ E is a density point, i.e.,
it satisfies limr→0 area(D(p, r) ∩ E)/ area(D(p, r)) = 1.

(4) In the definition of density points, we can replace round disks by other
kinds of neighborhoods. For example, a topological disk D is called α-round
if

area(D) ≥ α diam(D)2.
If p is a density point of E and {Dk} is a sequence of α-round neighborhoods
of p with rk = diam(Dk) → 0, then

area(Dk ∩ E)
area(Dk)

= 1− area(Dk r E)
area(Dk)

≥ 1− area(D(p, rk))
area(Dk)

· area(D(p, rk)r E)
area(D(p, rk))

≥ 1− πr2
k

αr2
k
· area(D(p, rk)r E)

area(D(p, rk))

= 1− π

α
· area(D(p, rk)r E)

area(D(p, rk))
.

Since area(D(p, rk)r E)/ area(D(p, rk)) → 0 as k → ∞, it follows that

lim
k→∞

area(Dk ∩ E)
area(Dk)

= 1.

(5) A rational map f is said to be ergodic (with respect to the Lebesgue measure
class on the sphere) if for every measurable set E ⊂ Ĉ which satisfies E =
f−1(E) it is true that area(E) = 0 or area(Ĉr E) = 0.

It is not hard to show that J( f ) = Ĉ whenever f is ergodic.

(6) “Ergodic or Attracting” Theorem: Suppose f ∈ Ratd with d ≥ 2. Then

• f is ergodic and hence J( f ) = Ĉ, or

• limn→∞ distσ( f ◦n(z), P( f )) = 0 for almost every z ∈ J( f ).

The two possibilities are not mutually exclusive: According to M. Rees,
there are ergodic rational maps with P( f ) = J( f ) = Ĉ.

(7) Corollary: If f is expanding, then area(J( f )) = 0.

A more careful analysis of the proof shows that in fact dimH(J( f )) < 2.
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Lecture 14.
(1) Let X be a smooth orientable surface. A conformal structure on X is an equiv-

alence class of smooth Riemannian metrics, where the metrics g, g′ are con-
sidered equivalent if g′ = η g for some positive function η : X → R. The
equivalence class (also called the conformal class) of g is denoted by [g].

It follows from the definition that each conformal structure gives rise to a
well-defined notion of “angle” between tangent vectors.

(2) Now assume in addition that X has a complex structure. Then X carries a
canonical conformal structure whose representative metrics have the local
form g(z) = γ(z) |dz| in each holomorphic local coordinate z on X. This is
well-defined since if ζ is another local coordinate near the same point and
ζ 7→ z(ζ) is the change of coordinates, then

g(ζ) = γ(z(ζ)) |z′(ζ)| |dζ|
which is a multiple of |dζ|. We call this conformal structure the standard
conformal structure of X (with respect to the given complex structure) and
denote it by σX.

(3) On a Riemann surface, it is often easier to do local computations in complex-
variable notations. Let X be a Riemann surface and z = x + iy be a holomor-
phic local coordinate on X. Then (x, y) can be thought of as coordinates for
the underlying smooth surface. In these coordinates, a Riemannian metric
g has the local form

E dx2 + 2F dx dy + G dy2,

where E, F, G are smooth functions of (x, y) satisfying E > 0, G > 0 and
EG− F2 > 0. The associated inner product on each tangent space is given
by

〈
a

∂

∂x
+ b

∂

∂y
, c

∂

∂x
+ d

∂

∂y

〉
= Eac + F(ad + bc) + Gbd

= [a b] L
[

c
d

]

where

L =
[

E F
F G

]

is the matrix of g in the basis { ∂
∂x , ∂

∂y}. In particular,
∥∥∥∥a

∂

∂x
+ b

∂

∂y

∥∥∥∥
2

= Ea2 + 2Fab + Gb2.
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Define two local sections of the complexified cotangent bundle T∗X⊗C by

dz = dx + i dy
dz = dx− i dy

which form a basis for each complexified cotangent space. The local sec-
tions

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)

∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)

of the complexified tangent bundle TX⊗C will form the dual basis at each
point. The inner product g extends uniquely to a Hermitian product on
TX ⊗C. The matrix of this Hermitian product in the basis { ∂

∂z , ∂
∂z} is given

by L′ = D∗ L D, where

D =
1
2

[
1 1

i −i

]
.

It follows that

L′ =
1
4

[
E + G E− G− 2iF

E− G + 2iF E + G

]
.

Let us introduce the quantities

γ2 =
1
4
(E + G +

√
EG− F2)

µ =
1

4γ2 (E− G + 2iF) =
E− G + 2iF

E + G +
√

EG− F2
.

Note that

γ2 > 0 and |µ|2 =
E + G− 2

√
EG− F2

E + G + 2
√

EG− F2
< 1.

Substituting these into L′ gives

L′ = γ2




1 + |µ|2
2

µ

µ
1 + |µ|2

2


 .

Since the Hermitian product on T∗X⊗C is given by
〈

α
∂

∂z
+ β

∂

∂z
, ω

∂

∂z
+ ν

∂

∂z

〉
= [α β] L′

[
ω
ν

]
,
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it follows that
∥∥∥∥α

∂

∂z
+ β

∂

∂z

∥∥∥∥
2

= γ2
(

1 + |µ|2
2

(|α|2 + |β|2) + µ α β + µ α β

)
.

But real tangent vectors have the special form α ∂
∂z + α ∂

∂z , since a ∂
∂x + b ∂

∂y =
(a + ib) ∂

∂z + (a− ib) ∂
∂z . For such vectors, the above formula reduces to

∥∥∥∥α
∂

∂z
+ α

∂

∂z

∥∥∥∥
2

= γ2|α + µ α|2.

The last expression suggests that as long as we care about lengths of real
tangent vectors, the Hermitian metric g in the complex basis { ∂

∂z , ∂
∂z} can be

represented as
g = γ(z) |dz + µ(z) dz|,

with γ and µ defined as above.

(4) Let us see how the quantities γ and µ associated with a metric g transform
under a holomorphic change of coordinates z 7→ w on X:

γ(z) |dz + µ(z) dz| = w∗(γ(w) |dw + µ(w) dw|)
= γ(w(z)) |w′(z) dz + µ(w(z))w′(z) dz|

= γ(w(z)) |w′(z)|
∣∣∣∣∣dz + µ(w(z))

w′(z)
w′(z)

dz

∣∣∣∣∣ ,

from which we obtain

γ(z) = γ(w(z)) |w′(z)|

µ(z) = µ(w(z))
w′(z)
w′(z)

or simply

γ(z) |dz| = γ(w) |dw|
µ(z)

dz
dz

= µ(w)
dw
dw

.

It follows that γ(z) |dz| is a well-defined (1, 1)-differential, namely a con-
formal metric, on X. Similarly, µ(z) dz

dz is a well-defined (−1, 1)-differential
on X. We call µ = µ(z) dz

dz the Beltrami differential associated with g. Note
that µ depends only on the conformal class [g]. Note also that z 7→ |µ(z)| is
a well-defined function on X.
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(5) Corollary: There is a one-to-one correspondence between conformal struc-
tures on a Riemann surface X and Beltrami differentials µ = µ(z) dz

dz which
satisfy |µ(z)| < 1 in every local coordinate z on X. The standard conformal
structure σX corresponds to the zero Beltrami differential.

(6) Here is the geometric interpretation of a Beltrami differential associated
with a conformal structure [g]: Fix a local coordinate z = x + iy ∼= (x, y)
near a point p ∈ X. Consider the family of “circles” E(p) = {v ∈ TpX :
‖v‖ = const.} which depends only on [g]. If v = a ∂

∂x + b ∂
∂y = (a +

ib) ∂
∂z + (a − ib) ∂

∂z , then the “circles” ‖v‖ = const. correspond to the loci
|(a + ib) + µ(a− ib)| = const. in the real (a, b)-plane. Setting µ = reiθ and
ζ = (a + ib)e−i θ

2 , we obtain the loci |ζ + rζ| = const. in the ζ-plane, which
is the family of concentric ellipses with the minor axis along the real direc-
tion and the major axis along the imaginary direction, and with the ratio
of the major to minor axis equal to 1+r

1−r . Transferring this family back to
the (a, b)-plane, it follows that E(p) is a family of concentric ellipses in TpX
with

1
2

arg µ = angle of elevation of the minor axis

1 + |µ|
1− |µ| = ratio of the major to minor axis

Lecture 17.
All surfaces are to be smooth, oriented, connected and without boundary. All

diffeomorphisms are assumed orientation-preserving.

(1) Let X and Y be surfaces and ϕ : X → Y be a diffeomorphism. Given a
conformal structure σ = [g] on Y, the pull-back ϕ∗σ is defined as [ϕ∗g]. It is
easy to check that the definition is independent of the representative g of σ.

Now assume X and Y are Riemann surfaces. Express ϕ locally as w =
w(z), where z and w are local coordinates on X and Y, and let σ = [ |dw +
µ(w) dw| ]. Then

ϕ∗σ = [ |wz dz + wz dz + µ(w(z)) (wz dz + wz dz)| ]
= [ |(wz + µ(w(z)) wz) dz + (wz + µ(w(z)) wz) dz| ]

=
[ ∣∣∣∣dz +

wz + µ(w(z)) wz

wz + µ(w(z)) wz
dz

∣∣∣∣
]

,

where we have used the fact that

wz = wz and wz = wz.
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This shows in particular that ϕ : X → Y is a biholomorphism if and only if
ϕ∗σY = σX. It also suggests the following pull-back operation on Beltrami
differentials:

ϕ∗
(

µ(w)
dw
dw

)
=

wz + µ(w(z)) wz

wz + µ(w(z)) wz

dz
dz

=
wz

wz

µ(w(z)) + wz
wz

1 + wz
wz

µ(w(z))
dz
dz

.

Thus, at the level of Beltrami coefficients, the pull-back operator acts fiber-
wise as

ϕ∗(µ) = λ

(
µ + α

1 + α µ

)
where λ =

wz

wz
and α =

wz

wz
.

Note that |λ| = 1 and |α| < 1, where the latter holds since ϕ is orientation-
preserving and hence has positive Jacobian |wz|2 − |wz|2. It follows that the
pull-back operator acts on Beltrami coefficients fiberwise by an automor-
phism of the unit disk. Note that when ϕ is a biholomorphism, α = 0 and
the automorphism reduces to the (linear) rotation µ 7→ λµ.

(2) The Integrability Question: “Given a conformal structure σ on a surface X,
does there exist a complex structure on X with respect to which σX = σ?”
If such complex structure exists, we say that it is compatible with σ and we
call σ integrable.

An equivalent question is whether there is a Riemann surface Y and a
diffeomorphism ϕ : X → Y such that ϕ∗σY = σ. Any such ϕ is said to
rectify σ. To see the equivalence, note that if ϕ : X → Y rectifies σ, it pulls
back the complex structure of Y to one on X which is compatible with σ.
Conversely, if there is a complex structure on X compatible with σ, then the
map id : X → X rectifies σ.

Suppose ϕ : X → Y and ψ : X → Z both rectify σ. Then (ψ ◦ ϕ−1)∗σZ =
σY, which means ψ ◦ ϕ−1 : Y → Z is a biholomorphism. It follows that
the map which rectifies a given conformal structure is unique up to post-
composition with a biholomorphism.

(3) A local condition for integrability: Suppose σ = [ |dz + µ(z) dz| ] is a con-
formal structure on a Riemann surface X. Then, by the above computation
for pull-backs, the condition ϕ∗σY = σ translates into

wz

wz
= µ(z),

which is called the Beltrami equation. Any (diffeomorphic) solution of this
equation is called a µ-conformal map. Note that when µ = 0 it reduces to the
classical Cauchy-Riemann equation wz = 0.
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(4) Theorem (Guass): Suppose µ is a smooth complex-valued function defined
in D which satisfies |µ(z)| < 1 at every z ∈ D. Then there exists a µ-

conformal diffeomorphism ϕ : D
∼=−→ ϕ(D) ⊂ C.

Note that either ϕ(D) = C or ϕ(D) is biholomorphic to D by the Rie-
mann Mapping Theorem. Thus, in the above theorem we can find µ-conformal
solutions D → D or D → C.

(5) Corollary: Let X be a surface with a Riemannian metric g. Then around
each point of X we can find isothermal coordinates (x, y) in which g has the
form γ(x, y)

√
dx2 + dy2.

(6) Corollary: Every smooth conformal structure on a surface is integrable. In
particular, every (oriented, connected, boundary-less) surface admits the
structure of a Riemann surface.

(7) Corollary (Differential-Geometric Uniformization Theorem): Every simply-
connected surface with a Riemannian metric is conformally diffeomorphic
to D, R2 or S2.

Here “conformal” should be understood as “angle-preserving.”

(8) Problem: Let g be a smooth Riemannian metric on D. Decide whether
(D, g) is conformally diffeomorphic to D or R2.

The answer is available in certain cases. For example, if g = |dz + µ(z) dz|
and ‖µ‖∞ < 1, then (D, g) ∼= D is always the case (this will be a corollary
of the Measurable Riemann Mapping Theorem). As another example, sup-
pose g is rotationally symmetric so that |µ| depends only on r = |z|. Then
(D, g) ∼= D or R2 according as

lim
a→1−

∫ a

1
2

1 + |µ|
1− |µ|

dr
r

is finite or infinite.

(9) Example: Let g = |dz + k dz| where 0 ≤ k < 1. Then (D, g) ∼= D. In fact,
the affine map w = z + kz sending D to the ellipse

E =
{

(x, y) ∈ R2 :
x2

(1 + k)2 +
y2

(1− k)2 < 1
}

satisfies the Beltrami equation wz = k wz. Post-composing w with a biholo-
morphism E → D given by the Riemann Mapping Theorem, we obtain a
conformal diffeomorphism from (D, g) to D.
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(10) Example: If g = |dz + z2 dz|, then (D, g) ∼= C. In fact, w = z
1−|z|2 is a

conformal diffeomorphism from (D, g) to C since

wz

wz
=

z2

(1− |z|2)2

1
(1− |z|2)2

= z2.

Lecture 18.
(1) A conformal structure [ |dz + µ(z) dz| ] on a Riemann surface, or its associ-

ated Beltrami differential µ(z) dz
dz , is said to have bounded dilatation if

‖µ‖∞ = sup
z∈X

|µ(z)| < 1.

(2) An orientation-preserving diffeomorphism f : X → Y between Riemann
surfaces is called quasiconformal if f ∗σY has bounded dilatation. Locally,
this means there exists a 0 ≤ k < 1 such that

sup
z∈X

∣∣∣∣
fz

fz

∣∣∣∣ < k.

In this case, we say that f is K-quasiconformal, where 1 ≤ K = 1+k
1−k < +∞.

Thus, a 1-quasiconformal diffeomorphism is holomorphic.

(3) In many applications, one is bound to consider conformal structures on Rie-
mann surfaces which are only measurable. The integrability question for
such conformal structures still makes sense, but maps which would rectify
such structures can no longer be smooth. Easy examples show that measur-
able conformal structures are not generally integrable. However, with the
extra assumption of having bounded dilatation, they are integrable and the
maps which rectify them are homeomorphisms which enjoy some degree
of regularity. This leads to the idea of considering quasiconformal homeo-
morphisms between Riemann surfaces.

(4) Let U, V be open sets in C. An orientation-preserving homeomorphism
f : U → V is called K-quasiconformal if
(i) f is absolutely continuous on lines (ACL). This means that the restric-

tion of f to almost every horizontal and vertical segment in U is abso-
lutely continuous.

(ii) | fz| ≤ k| fz| almost everywhere in U, where k = K−1
K+1 .

The quantity µ f = fz
fz

is called the complex dilatation of f .
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(5) Here are some properties of quasiconformal homeomorphisms:

• If f : U → V is quasiconformal, then f is differentiable almost every-
where in U, that is, for almost every p ∈ U,

f (p + z) = f (p) + z fz(p) + z fz(p) + ε(z),

where ε(z)
z → 0 as z → 0.

• If f = u + iv : U → V is quasiconformal, the Jacobian

J f = uxvy − uyvx = | fz|2 − | fz|2
is locally integrable in U, and we have

∫

E
J f dx dy = area( f (E))

for every compact set E ⊂ U. In particular, f maps sets of area zero to
sets of area zero.

• The partial derivatives fz and fz of a quasiconformal map f : U → V
are locally square-integrable in U. In fact, if f if K-quasiconformal and
k = K−1

K+1 , then

| fz|2 ≤ 1
1− k2 J f and | fz|2 ≤ k2

1− k2 J f .

• The partial derivatives fz and fz of a quasiconformal map f : U → V
are the distributional derivatives also, that is,∫

U
fz ϕ = −

∫

U
f ϕz and

∫

U
fz ϕ = −

∫

U
f ϕz

for every compactly supported smooth test function ϕ : U → C.

• The standard Chain-Rule formulas hold for the composition of quasi-
conformal maps: If w = f (z) and ζ = g(w) are quasiconformal, so is
ζ = (g ◦ f )(z), and the relations

ζz = ζw wz + ζw wz

ζz = ζw wz + ζw wz

hold almost everywhere. Dividing, we obtain

µg◦ f =
ζw wz + ζw wz

ζw wz + ζw wz
=

wz + (µg ◦ f ) wz

wz + (µg ◦ f ) wz
=

µ f + (µg ◦ f ) (wz
wz

)

1 + (µg ◦ f ) (wz
wz

) µ f
.

It follows that

µg◦ f = T
(

(µg ◦ f ) (
wz

wz
)
)

where s T7→ s + µ f

1 + µ f s
∈ Aut(D)
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• If f is K-quasiconformal, so is f−1.

• If f is K1-quasiconformal and g is K2-quasiconformal, the composition
g ◦ f is K1K2-quasiconformal.

• Weyl’s Lemma: A 1-quasiconformal homeomorphism is holomorphic.

• If f : U → V is K-quasiconformal, then

K−1 mod(A) ≤ mod( f (A)) ≤ K mod(A)

for every annulus A ⊂ U. According to Ahlfors, this property is equiv-
alent to being K-quasiconformal.

(6) Example: Let K ≥ 1 and define f : C → C by

f (x + iy) =

{
x + iKy if y ≥ 0

x + iy if y < 0.

Then f is an ACL homeomorphism with

fz(x + iy) =

{
1+K

2 if y ≥ 0

1 if y < 0
fz(x + iy) =

{
1−K

2 if y ≥ 0

0 if y < 0

so that | fz
fz
| ≤ K−1

K+1 . It follows that f is K-quasiconformal.

(7) Example: Let 0 ≤ k < 1 and define f : C → C by

f (z) =

{
z + kz if |z| ≤ 1

z + k
z if |z| > 1.

Then f is an ACL homeomorphism with

fz(z) =

{
1 if |z| ≤ 1

1− k
z2 if |z| > 1

fz(z) =

{
k if |z| ≤ 1

0 if |z| > 1

so that | fz
fz
| ≤ k. It follows that f is K-quasiconformal, with K = 1+k

1−k .

(8) Example: Let ξ : [0, 1] → [0, 1] be continuous and non-decreasing, ξ(0) = 0,
ξ(1) = 1, and ξ ′(x) = 0 almost everywhere (such a function is often called
a devil’s staircase). Extend ξ to a map R → R by setting ξ(x + n) = ξ(x) + n
for n ∈ Z. Define f : C → C by

f (x + iy) = x + i(y + ξ(x)).

Then f is a homeomorphism which satisfies fz = 0 almost everywhere in
C. However, f is not holomorphic. This does not contradict Weyl’s Lemma
since f is not ACL, hence not quasiconformal.
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(9) Example: The unit disk D and the complex plane C are not quasicon-
formally homeomorphic: If there were a quasiconformal homeomorphism
f : D → C, then A = f ({z : 1

2 < |z| < 1}) would be an annulus of finite
modulus. But A contains the punctured disk {z : |z| > r} for all large r,
whose modulus is infinite.

Lecture 19.
(1) A homeomorphism f : X → Y between Riemann surfaces is K-quasiconformal

if w ◦ f ◦ z−1 is K-quasiconformal for each pair of local coordinates z on X
and w on Y for which this composition makes sense.

(2) Much of the notions we discussed above for diffeomorphisms, and the local
computations, remain valid for quasiconformal maps, as they are differen-
tiable almost everywhere. Thus, we can talk about measurable Riemannian
metrics and conformal structures on surfaces, measurable Beltrami differen-
tials on Riemann surfaces, and the pull-back of a conformal structure or Bel-
trami differential under a quasiconformal homeomorphism. In particular,
if ϕ : X → Y is a quasiconformal homeomorphism and σ = [ |dz + µ(z) dz| ]
a conformal structure on X, then

ϕ rectifies σ ⇐⇒ ϕ∗σY = σ ⇐⇒ µϕ =
ϕz

ϕz

dz
dz

= µ a.e.

(3) Theorem (Local solutions of the Beltrami equation): Let µ be a measurable
complex-valued function on the unit disk D with ‖µ‖∞ < 1. Then there
exists a quasiconformal homeomorphism ϕ : D → D which satisfies ϕz

ϕz
= µ

almost everywhere.

(4) The Measurable Riemann Mapping Theorem (MRMT): Let µ be a measur-
able Beltrami differential on a Riemann surface X which has bounded di-
latation. Then there exists a Riemann surface Y and a quasiconformal home-
omorphism ϕ : X → Y such that µϕ = µ almost everywhere. If ψ : X → Z is
another such homeomorphism, the map ψ ◦ ϕ−1 : Y → Z is biholomorphic.

(5) MRMT with parameters for Ĉ: Let µ be a measurable Beltrami differential
on the Riemann sphere Ĉ which has bounded dilatation. Then there exists a
unique quasiconformal homeomorphism ϕµ : Ĉ → Ĉ such that ϕµ(0) = 0,
ϕµ(1) = 1, ϕµ(∞) = ∞, and µϕµ = µ almost everywhere. Moreover, if µ
depends continuously, smoothly, or analytically on a parameter, so does the
normalized solution ϕµ.

(6) A deformation retraction QC(Ĉ) → Aut(Ĉ): Let ϕ : Ĉ → Ĉ be a quasicon-
formal homeomorphism and Φ ∈ Aut(Ĉ) be uniquely determined by the
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condition Φ = ϕ on the set {0, 1, ∞}. Define µt = t µϕ for t ∈ [0, 1]. Let
ϕt = Φ ◦ ϕµt , where ϕµt is the normalized solution of the Beltrami equa-
tion given by MRMT. Then t 7→ ϕt is continuous and by uniqueness of the
solutions, ϕ1 = ϕ and ϕ0 = Φ.

(7) Let f and g be rational maps and ϕ : Ĉ → Ĉ be a quasiconformal conjugacy
between them so that ϕ ◦ f = g ◦ ϕ. The fact that g is holomorphic implies
that the Beltrami differential µϕ is f -invariant, that is f ∗µϕ = µϕ. Con-
versely, suppose µ is an f -invariant Beltrami differential with ‖µ‖∞ < 1.
Then the branched covering g = ϕµ ◦ f ◦ (ϕµ)−1 is a rational map since it is
locally 1-quasiconformal away from the branch points.

Thus, there is a correspondence between f -invariant Beltrami differen-
tials of bounded dilatation and rational maps which are quasiconformally
conjugate to f (the correspondence need not be one-to-one).

(8) As a basic dynamical application of the preceding remark, let us show that
the quasiconformal conjugacy class of a rational map f is always path-
connected. Suppose ϕ is a quasiconformal conjugacy between f and an-
other rational map g. Consider the family µt = tµϕ of Beltrami differentials
as above and note that

f ∗µt = f ∗(tµϕ) = t f ∗µϕ = tµϕ = µt,

where we have used the fact that the pull-back operator f ∗ acts as a rotation
about the origin and hence is linear. If ϕt = Φ ◦ ϕµt as before, it follows that
the path t 7→ gt = ϕt ◦ f ◦ (ϕt)−1 consists of rational maps quasiconformally
conjugate to f connecting g0 = Φ ◦ f ◦Φ−1 to g1 = g. Joining this path to
t 7→ Φt ◦ f ◦Φ−1

t in which t 7→ Φt is a path in Aut(Ĉ) connecting id to Φ,
we obtain the desired path from f to g.

Lecture 20.

Here are 3 elementary applications of MRMT in holomorphic dynamics.

(1) Invariance of multipliers: Let f (z) = λz + O(z2) be the germ of a holo-
morphic map in the plane fixing the origin. The multiplier λ = f ′(0) is
clearly invariant under smooth conjugacies. On the other hand, z 7→ 2z is
topologically (even quasiconformally) conjugate to z 7→ 3z.

A remarkable theorem of Naishul asserts that when the origin is an indif-
ferent fixed point, the multiplier λ is invariant under topological conjuga-
cies. Here we prove a weaker version of this result by using MRMT.

Theorem: Let f (z) = λz + O(z2) and g(z) = νz + O(z2) be quasiconfor-
mally conjugate near 0. If |λ| = 1, then λ = ν.
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Proof. Let ϕ be a quasiconformal homeomorphism defined near 0 which
satisfies ϕ(0) = 0 and ϕ ◦ f = g ◦ ϕ. Consider the Beltrami differential
µ = µϕ defined near the origin, which is clearly f -invariant. Let δ, ε > 0 be
sufficiently small and define, for t ∈ D(0, 1 + ε), the Beltrami differentials

µt(z) =

{
t µ(z) if |z| < δ

0 otherwise

Since f ∗µ = µ and f ∗ is linear, it follows that f ∗µt = µt near 0. Let
ϕt = ϕµt : Ĉ → Ĉ be the normalized solution of the Beltrami equation given
by MRMT. Then gt = ϕt ◦ f ◦ ϕ−1

t is a 1-quasiconformal homeomorphism
near the origin, hence holomorphic there. Moreover, t 7→ gt(z) is holomor-
phic for each fixed z sufficiently close to 0. Writing gt(z) = λt z + O(z2), it
follows that t 7→ λt is holomorphic. But gt is conjugate to f whose fixed
point at z = 0 is indifferent, so |λt| = 1 for all t ∈ D(0, 1 + ε), implying
t 7→ λt is constant. Now ϕ0 = id so g0 = f so λ0 = λ. Similarly, ϕ1 ◦ ϕ−1 is
conformal, so g1 is holomorphically conjugate to g, so λ1 = ν. We conclude
that λ = ν.

(2) Linearization of hyperbolic germs: A holomorphic germ f (z) = λz + O(z2)
is called hyperbolic if |λ| 6= 0, 1. A classical theorem of Koenigs asserts that
every hyperbolic germ is holomorphically linearizable. The classical proof,
for |λ| < 1, consists of showing that the sequence {λ−n f ◦n(z)}n≥1 con-
verges uniformly in a neighborhood of the origin to a holomorphic map Φ.
It is then clear that Φ′(0) = 1 and Φ( f (z)) = λΦ(z). Here we give a proof
of this result by applying MRMT.

Theorem (Koenigs): If f (z) = λz + O(z2) is a hyperbolic germ, there exists
a holomorphic change of coordinate z 7→ Φ(z) defined near the origin, with
Φ(0) = 0, such that Φ( f (z)) = λΦ(z).

Proof. Without losing generality, assume |λ| < 1 (otherwise consider the
local inverse of f ). Choose a disk U = D(0, ε) small enough so that f (U)
is compactly contained in U. It then follows by an induction that f ◦n(U)
is compactly contained in f ◦n−1(U) for all n ≥ 1, and that f ◦n(z) → 0 for
every z ∈ U. Let L denote the linear contraction z 7→ 1

2 z. Take a smooth
diffeomorphism ψ : A = {z ∈ C : 1

2 ≤ |z| ≤ 1} → Ur f (U) subject only to
the condition ψ(L(z)) = f (ψ(z)) whenever |z| = 1. Extend ψ to a homeo-
morphism D → U by defining ψ(L◦n(z)) = f ◦n(ψ(z)) for all n ≥ 1 and all
z ∈ A. Then ψ is quasiconformal and satisfies

ψ(L(z)) = f (ψ(z)) for all z ∈ D.
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Now consider the Beltrami differential µ = µψ on D. Extend µ to the entire
plane by taking pull-backs under L. The resulting Beltrami differential (still
denote by µ) is easily seen to be L-invariant and with bounded dilatation. If
ϕ = ϕµ is the normalized solution of the Beltrami equation given by MRMT,
it follows that the conjugate homeomorphism g = ϕ ◦ L ◦ ϕ−1 : C → C is
holomorphic. Since g(0) = 0, we must have g(z) = νz for some ν ∈ C∗.

Set Φ = ϕ ◦ ψ−1. Then Φ is a 1-quasiconformal homeomorphism defined
in a neighborhood of the fixed point 0. By Weyl’s Lemma, Φ is holomorphic.
Moreover, Φ conjugates f to g near 0, so ν = g′(0) = f ′(0) = λ.

(3) Construction of Herman rings by surgery: Suppose f is a rational map of
degree d ≥ 2 with a fixed Siegel disk ∆ of rotation number θ. Take another
rational map g of degree d′ ≥ 2 with a fixed Siegel disk ∆′ of rotation num-
ber−θ. Following Shishikura, we will construct a rational map F, of degree
d + d′ − 1, with a Herman ring of rotation number θ. The idea is to cut
out invariant disks from ∆ and ∆′ and paste the resulting sphere-with-holes
along the boundary to obtain a sphere. There is an obvious action on this
sphere coming from the action of f and g on the pieces. We apply MRMT
to realize this action as a rational map.

More precisely, let φ : ∆
∼=−→ D(0, 2) and ψ : ∆′

∼=−→ D(0, 2) be conformal
isomorphisms which satisfy

φ( f (z)) = e2πiθφ(z) and ψ(g(z)) = e−2πiθψ(z).

Let

γ = {z ∈ ∆ : |φ(z)| = 1} and γ′ = {z ∈ ∆′ : |ψ(z)| = 1}.

The mapping h : γ → γ′ defined by h(z) = ψ−1(φ(z)) is a smooth orientation-
reversing diffeomorphism which satisfies h( f (z)) = g(h(z)) for all z ∈ γ.
Extend h to a quasiconformal homeomorphism h : Ĉ → Ĉ with the follow-
ing properties:

• h maps int(γ) to ext(γ′) and ext(γ) to int(γ′). (Here “int” refers to
the complementary component of the Jordan curve which contains the
center of the Siegel disk and “ext” refers to the other component.)

• h is conformal in a neighborhood of Ĉr (∆ ∩ h−1(∆′)).

Define

F̃(z) =

{
f (z) if z ∈ γ ∪ ext(γ)

(h−1 ◦ g ◦ h)(z) if z ∈ int(γ)
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It is easy to check that F̃ is a degree d + d′ − 1 branched covering of the
sphere which is locally quasiconformal away from its branch points. More-
over, A = ∆ ∩ h−1(∆′) is a “topological Herman ring” of rotation number θ

for F̃, and F is holomorphic in a neighborhood of Ĉr F−1(A).
To conjugate F̃ to a rational map, define a Beltrami differential µ on Ĉ as

follows. First define µ on A by

µ =

{
µ0 on A ∩ ext(γ)

h∗µ0 on A ∩ int(γ)

(where µ0 is the zero Beltrami differential corresponding to the standard
conformal structure of the sphere). Clearly, F̃ : A → A preserves µ. Extend
µ to the union

⋃
n≥1 F̃−n(A) by pulling back via the appropriate iterate of

F̃. Note that only the first pull-back to F̃−1(A)r A can possibly increase
the dilatation of µ; all further pull-backs are taken by iterates of F̃ which are
holomorphic and so do not change the dilatation. On the complement of
this union, set µ = µ0. The Beltrami differential µ defined this way is clearly
F̃-invariant and has bounded dilatation. It follows that F = ϕµ ◦ F̃ ◦ (ϕµ)−1

is a rational map with a Herman ring ϕµ(A) of rotation number θ.

Lecture 21.
We present a simplified version of Sullivan’s proof of Fatou’s no wandering do-

main conjecture, following N. Baker and C. McMullen.

(1) Theorem (Sullivan): Let f ∈ Ratd with d ≥ 2. Then every Fatou compo-
nent U of f is eventually periodic, that is, there exist n > m > 0 such that
f ◦n(U) = f ◦m(U).

The idea of the proof is as follows: Assuming there exists a wandering
Fatou component U (or simply a wandering domain), we change the confor-
mal structure of the sphere along the grand orbit of U to find an infinite-
dimensional family of rational maps of degree d, all quasiconformally con-
jugate to f . This is a contradiction since the space Ratd of rational maps
of degree d, as a Zariski open subset of CP2d+1, is finite-dimensional. The
eventual periodicity statement for entire maps is false. For example, the
map z 7→ z + sin(2πz) has wandering domains.

(2) Lemma (Baker): If U is a wandering domain for a rational map f , then
f ◦n(U) is simply-connected for all large n.

Proof. Let Un = f ◦n(U). Replacing U by Uk for some large k if necessary,
we may assume that no Un contains a critical point of f , so that f ◦n : U →
Un is a covering map for all n. We can also arrange that ∞ ∈ U. Since
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the Un are disjoint subsets of Cr U for n ≥ 1, we have area(Un) → 0.
But { f ◦n|U} is a normal family, so every convergent subsequence of this
sequence must be a constant function. In particular, diam( f ◦n(K)) → 0 for
every compact set K ⊂ U. Take any loop γ ⊂ U and set γn = f ◦n(γ) ⊂ Un.
By the above argument diam(γn) → 0. If Bn is the union of the bounded
components of Cr γn, it follows that diam(Bn) → 0 also. Since f (Bn) is
open, ∂ f (Bn) ⊂ γn+1, and diam f (Bn) → 0, we must have f (Bn) ⊂ Bn+1 for
large n. In particular, the iterated images of Bn are subsets of CrU for large
n. Montel’s theorem then implies Bn ⊂ F( f ), which gives Bn ⊂ Un. Thus
γn is null-homotopic in Un for large n. Since f ◦n : U → Un is a covering
map, we can lift this homotopy to U, which proves U is simply connected.

(3) Let a rational map f have a wandering domain U. In view of the above
lemma, we can assume that Un = f ◦n(U) is simply-connected and f : Un →
Un+1 is a conformal isomorphism for all n ≥ 0. Given an L∞ Beltrami
differential µ defined on U, we can construct an f -invariant L∞ Beltrami
differential on Ĉ as follows. Use the forward and backward iterates of f to
spread µ along the grand orbit

GO(U) = {z ∈ Ĉ : f ◦n(z) ∈ Um for some n, m ≥ 0}.

On the complement Ĉr GO(U), set µ = µ0. The resulting Beltrami differ-
ential is defined almost everywhere on Ĉ, it satisfies f ∗µ = µ by the way it
is defined, and ‖µ‖∞ < ∞ since spreading µ|U along GO(U) by the iterates
of the holomorphic map f does not change the dilatation. Now consider
the deformation µt = tµ for |t| < ε, where ε > 0 is small enough to guar-
antee ‖µt‖∞ < 1 if |t| < ε. Note that since f is holomorphic, f ∗ acts as a
linear rotation, so f ∗µt = µt. Let ϕt = ϕµt : Ĉ → Ĉ be the normalized
solution of the Beltrami equation (ϕt)z = µt (ϕt)z which fixes 0, 1, ∞. Then
ft = ϕt ◦ f ◦ ϕ−1

t is a rational map of degree d, and t 7→ ft is holomorphic,
with f0 = f . The infinitesimal variation

w(z) =
d
dt

∣∣∣
t=0

ft(z)

defines a holomorphic vector field whose value at z lies in the tangent space
Tf (z)Ĉ. In other words, w is a holomorphic section of the pull-back bundle
f ∗(TĈ) which in turn can be identified with a tangent vector in Tf Ratd.
This is the so-called infinitesimal deformation of f induced by µ. We say that
µ induces a trivial deformation if w = 0.

Another way of describing w is as follows: First consider the unique qua-
siconformal vector field solution to the equation ∂v = µ which vanishes
at 0, 1, ∞. This is precisely the infinitesimal variation d

dt |t=0 ϕt(z) of the



42

normalized solution of the Beltrami equation. It is not hard to check that
w = δ f v, where

δ f v(z) = v( f (z))− f ′(z)v(z)

measures the deviation of v from being f -invariant. Note in particular that
δ f v is holomorphic even though v is only quasiconformal, and that w = δ f v
depends linearly on µ, a fact that is not immediately clear from the first
description of w. It follows that µ induces a trivial deformation if and only
if v is f -invariant.

It is easy to see that the triviality condition δ f v = 0 forces v to vanish
on the Julia set J( f ). In fact, let z0 7→ z1 7→ · · · 7→ zn = z0 be a repelling
cycle of f with multiplier λ. Then the condition δ f v = 0 implies v(zj+1) =
f ′(zj)v(zj) for all j = 0, . . . , n− 1, so that

n−1

∏
j=0

v(zj) = λ ·
n−1

∏
j=0

v(zj).

Since |λ| > 1, it follows that v(zj) = 0 for some, hence for all j. Now J( f ) is
the closure of such cycles and v is continuous, so v(z) = 0 for all z ∈ J( f ).

(4) The above construction gives well-defined linear maps

B(U)
i

↪→ B(Ĉ, f ) D−→ Tf Ratd

Here B(U) is the space of L∞ Beltrami differentials in U, B(Ĉ, f ) is the space
of f -invariant L∞ Beltrami differentials on Ĉ, and D is the linear operator
Dµ = w = δ f v constructed above.

Lemma: B(U) contains an infinite-dimensional subspace N(U) of com-
pactly supported Beltrami differentials with the following property: If µ ∈
N(U) satisfies µ = ∂v for some quasiconformal vector field v with v|∂U = 0,
then µ = 0.

Assuming this lemma for a moment, let us see how this implies the theo-
rem. Consider the above subspace N(U) for a simply-connected wandering
domain U and restrict the above diagram to this subspace. If D(µ) = 0 for
some µ ∈ N(U), or in other words if µ induces a trivial deformation, that
means the normalized solution v to ∂v = µ is f -invariant. Hence v = 0
on J( f ) and in particular on the boundary of U. By the property of N(U),
µ = 0. This means that the infinite-dimensional subspace N(U) injects into
Tf Ratd whose dimension is 2d + 1. The contradiction shows that no wan-
dering domain can exist.
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(5) It remains to prove the above Lemma. Let us first consider the correspond-
ing problem for the unit disk D. Let N̂(D) ⊂ B(D) be the linear span of
the Beltrami differentials µk(z) = zk dz

dz for k ≥ 0. The vector field

Vk(z) =





1
k + 1

zk+1 ∂

∂z
|z| < 1

1
k + 1

z−(k+1) ∂

∂z
|z| ≥ 1

solves the equation ∂Vk = µk on D. Let µ = ∂v ∈ N̂(D) and v|∂D = 0, and
take the appropriate linear combination V of the Vk which solves ∂V = µ.
Then V− v is holomorphic in D and coincides with V on the boundary ∂D.
This is impossible if V|∂D has any negative power of z in it. Hence µ = 0. To
get the compact support condition, let N(D) ⊂ B(U) consist of all Beltrami
differentials which coincide with an element of N̂(D) on the disk |z| < 1

2
and are zero on 1

2 ≤ |z| < 1. If µ = ∂v ∈ N(D) and v|∂D = 0, then v
has to be zero on the annulus 1

2 < |z| < 1 since it is holomorphic there. In
particular, it is zero on |z| = 1

2 . Now the same argument applied to the disk
|z| < 1

2 shows µ = 0.

For the general case, consider a conformal isomorphism ψ : D
∼=−→ U

with the inverse φ = ψ−1 and define N(U) = φ∗(N(D)). Let v = v(z) ∂
∂z be

a quasiconformal vector field such that µ = ∂v ∈ N(U) and v|∂U = 0. Then
φ∗(v) = v(ψ(z))/ψ′(z) ∂

∂z is a vector field on D which is holomorphic near
the boundary ∂D and v(ψ(z)) → 0 as |z| → 1. By the reflection principle,
v(ψ(z)) is identically zero near the boundary of D. Since ψ∗µ = ∂φ∗(v) ∈
N(D), we must have ψ∗µ = 0, which implies µ = 0.

(6) Sullivan’s original argument had to deal with two essential difficulties: (i)
the possibility of U being non simply-connected, perhaps of infinite topo-
logical type; (ii) the possible complications near the boundary of U, for ex-
ample when ∂U is not locally-connected. He addressed the former by using
a direct limit argument, and the latter by using Carathéodory’s theory of
“prime ends.” Both of these difficulties are surprisingly bypassed in the
present proof.

Lecture 22.
(1) Let A ⊂ Ĉ be a set with at least 4 points and T be a connected complex

manifold with base point t0. A holomorphic motion of A over (T, t0) is a map
ϕ : T × A → Ĉ such that

(i) z 7→ ϕ(t, z) is injective for each t ∈ T.



44

(ii) t 7→ ϕ(t, z) is holomorphic for each z ∈ A.

(iii) ϕ(t0, z) = z for every z ∈ A.

In other words, {ϕt(·) = ϕ(t, ·)}t∈T is a holomorphic family of injections of
A into Ĉ, with ϕt0 = idA.

(2) Remarks:

• There is no assumption on the joint continuity of ϕ in (t, z), or even con-
tinuity in z for fixed t. They follow automatically from the λ-Lemma to
be discussed below.

• For our purposes, we usually take (T, t0) = (D, 0) and call ϕ a holo-
morphic motion over D.

• We can always assume that the motion is normalized in the sense that
0, 1, ∞ belong to A and they remain fixed under the motion. To see this,
take distinct points z1, z2, z3 in A and let α, βt ∈ Aut(Ĉ) be determined
by

α(0) = z1 α(1) = z2 α(∞) = z3

and

βt(ϕt(z1)) = 0 βt(ϕt(z2)) = 1 βt(ϕt(z3)) = ∞.

Then ψt = βt ◦ ϕt ◦ α is a normalized holomorphic motion of α−1(A).

(3) Examples:

• Let A = {0, 1, ∞, a} and p : D → Ĉr {0, 1, ∞} be the holomorphic uni-
versal covering map which satisfies p(0) = a. Then {ϕt}t∈D defined
by

ϕt(0) = 0 ϕt(1) = 1 ϕt(∞) = ∞ ϕt(a) = p(t)

is a holomorphic motion of A over D.

• Let A be the lattice Z⊕ iZ and define {ϕt}t∈H by

ϕt(m + in) = m + tn

is a holomorphic motion of A over (H, i).

• Let f : Ĉ → Ĉ be a quasiconformal homeomorphism and µ = µ f .
For |t| < 1, let ϕt = ϕtµ be the normalized solution of the Beltrami
equation given by MRMT. Then ϕt is a holomorphic motion of Ĉ over
D. Thus, every quasiconformal homeomorphism of the sphere gives
rise canonically to a holomorphic motion of the sphere.
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• Let U ( C be a Jordan domain. Suppose there are conformal isomor-
phisms f i

t : U → Ui
t (i = 0, 1) depending holomorphically on a param-

eter t ∈ D such that Ui
t ⊂ U and U0

t ∩U1
t = ∅. For every finite word

i1 · · · in of 0’s and 1’s, let

Ui1···in
t = f in

t ◦ · · · ◦ f i1
t (U)

and define the Cantor sets

Kt =
⋂

n≥1

⋃
Ui1···in

t .

Then the Kt determine a holomorphic motion of the base Cantor set K0
over D. To see this, take a z ∈ K0 and suppose that it is represented by
the infinite word i1i2i3 . . . so that

z = Ui1
0 ∩Ui1i2

0 ∩Ui1i2i3
0 ∩ · · ·

Define

ϕ(t, z) = Ui1
t ∩Ui1i2

t ∩Ui1i2i3
t ∩ · · · ∈ Kt.

Note that ϕ(t, z) is the locally uniform limit of the sequence of holomor-
phic functions ϕn(t) = f in

t ◦ · · · ◦ f i1
t , so it depends holomorphically on

t. It is now easy to check that (t, z) 7→ ϕ(t, z) is a holomorphic motion
of K0 over D.

(4) Let E ⊂ Ĉ be a set with at least 4 points. A homeomorphism f : E →
f (E) ⊂ Ĉ is called quasiconformal if there exists an M > 0 such that

dist
Ĉr{0,1,∞}(χ( f (z1), f (z2), f (z3), f (z4)), χ(z1, z2, z3, z4)) ≤ M

for all quadruples (z1, z2, z3, z4) in E. Here dist
Ĉr{0,1,∞} is the hyperbolic

distance in the trice puncture sphere and χ is the cross ratio defined by

χ(z1, z2, z3, z4) =
z3 − z1

z2 − z1
· z4 − z2

z4 − z3
.

It is not hard to check that this definition of quasiconformality coincides
with the standard definition when E = Ĉ.

(5) λ-Lemma (Mañe-Sad-Sullivan and Lyubich): A holomorphic motion ϕ :
D× A → Ĉ extends uniquely to a holomorphic motion Φ : D× A → Ĉ.
Moreover, Φ is continuous on D× A and Φt : A → Φt(A) is a quasiconfor-
mal homeomorphism for each t ∈ D.

Proof. Without losing generality, assume that the motion is normalized. By
Montel’s Theorem,

F = {t 7→ ϕ(t, z) : z ∈ A}
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is a normal family of holomorphic functions D → Ĉ, so it has compact
closure F in Hol(D, Ĉ). Moreover, if f , g ∈ F are distinct, then f (t) 6= g(t)
for all t ∈ D. To see this, take fn, gn ∈ F such that fn 6= gn, fn → f and gn →
g, and note that t 7→ fn(t)− gn(t) is nowhere vanishing by the injectivity
property of holomorphic motions. It follows from Hurwitz Theorem that
t 7→ f (t)− g(t) is nowhere vanishing as well.

For each t ∈ D consider the continuous map

pt : F → Ĉ pt( f ) = f (t).

By the above observation, pt is injective. Since F is compact, it follows that
pt is a homeomorphism onto its image, which is easily seen to be the closure
of ϕt(A). Now

Φ(t, z) = pt ◦ p−1
0 (z) (t, z) ∈ D× A,

extends ϕ to a motion of A.
The definition of the compact-open topology on F shows that for each

r < 1, the family {pt}|t|≤r is equicontinuous, so the same must be true for
the family {Φt}|t|≤r. It follows that Φ is continuous on the product D× A.

Finally, choose a quadruple (z1, z2, z3, z4) in A and define a holomorphic
map g : D → Ĉr {0, 1, ∞} by

g(t) = χ(Φt(z1), Φt(z2), Φt(z3), Φt(z4)).

By Schwarz Lemma,

dist
Ĉr{0,1,∞}(g(t), g(0)) ≤ distD(t, 0) = log

(
1 + |t|
1− |t|

)
,

or

dist
Ĉr{0,1,∞}(χ(Φt(z1), Φt(z2), Φt(z3), Φt(z4)), χ(z1, z2, z3, z4)) ≤ log

(
1 + |t|
1− |t|

)
,

which shows each Φt : A → Φt(A) is quasiconformal.

(6) The Improved λ-Lemma (Slodkowski): A holomorphic motion ϕ : D ×
A → Ĉ extends to a holomorphic motion Φ : D× Ĉ → Ĉ. The extended
motion Φ is continuous on D× Ĉ and Φt : Ĉ → Ĉ is Kt-quasiconformal for
each t ∈ D, where Kt = 1+|t|

1−|t| .

(7) Remarks:

• It was proved by Sullivan and Thurston that there exists a universal
constant 0 < a < 1 such that every holomorphic motion of A over D

extends to a holomorphic motion of the sphere over the smaller disk
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D(0, a). Bers and Royden proved that one can take a = 1
3 . More-

over, their extended motion over D(0, 1
3) had the advantage of being

canonical in the sense that the Beltrami differential µΦt is harmonic on
each component of Ĉr A. (A Beltrami differential µ on a hyperbolic
Riemann surface X is called harmonic if µ = φ

(ρX)2 for some holomor-
phic quadratic differential φ on X.) With this additional property, they
proved that the extended motion is unique.

• As Sullivan and Thurston observed, to obtain the improved λ-Lemma,
it suffices to prove the following holomorphic axiom of choice: Given a
finite set A and a point a /∈ A, every holomorphic motion of A over D

extends to a holomorphic motion of A ∪ {a} over D.

• In the original version of λ-Lemma, D can be replaced with an arbitrary
connected complex manifold, as essentially the same proof shows. In
the Bers-Royden version, D can be replaced with the unit ball in any
complex normed linear space. In the improved λ-Lemma, however, D

cannot be replaced for free; see the next example.

(8) Example (Douady): Let T = Ĉr {0, 1, ∞}, with the base point t0 = 2. Let
A = {0, 1, 2, ∞} and define a holomorphic motion ϕ : T × A → Ĉ by

ϕt(0) = 0 ϕt(1) = 1 ϕt(∞) = ∞ ϕt(2) = t.

This motion is maximal in the sense that it cannot be extended to a holo-
morphic motion of any bigger set over T. To see this, it suffices to show
that every holomorphic map f : T → T has a fixed point. Suppose by way
of contradiction that such a fixed point free map exists. By Picard’s Great
Theorem, none of 0, 1, ∞ can be an essential singularity for f , so f extends
to a rational map f : Ĉ → Ĉ of degree d ≥ 1. As f−1{0, 1, ∞} ⊂ {0, 1, ∞}, f
acts bijectively on {0, 1, ∞}. By the assumption all the d + 1 fixed points of
f are among {0, 1, ∞}. If d = 1, f is an automorphism which fixes {0, 1, ∞}
pointwise or fixes one of them and swaps the other two. In either case, it
must have a fixed point outside {0, 1, ∞}, which is a contradiction. If d > 1,
each fixed point in {0, 1, ∞} is a critical point of order d− 1 and in partic-
ular is a simple (i.e., multiplicity 1) fixed point. Since f has 2d− 2 critical
points altogether, it follows that f has at most 2 fixed points in {0, 1, ∞}.
Thus d + 1 ≤ 2, which is again a contradiction.

(9) The analogue of λ-Lemma is certainly false for continuous motions. As an
example, let A = { 1

n}n≥1 and define the continuous motion ϕ : R× A → Ĉ

by ϕ(t, 1
n ) = 1

n + i nt. Evidently, ϕ has no continuous extension to R× A.


