
CHAPTER 1

The Measurable Riemann Mapping Theorem

�1.1. Conformal structures on Riemann surfaces

Throughout, “smooth” will always mean C1. All surfaces are assumed to be
smooth, oriented and without boundary. All diffeomorphisms are assumed to be
smooth and orientation-preserving.

It will be convenient for our purposes to do local computations involving
metrics in the complex-variable notation. Let X be a Riemann surface and
z D x C iy be a holomorphic local coordinate on X . The pair .x; y/ can be
thought of as local coordinates for the underlying smooth surface. In these
coordinates, a smooth Riemannian metric � has the local form

E dx2 C 2F dx dy CG dy2;

where E;F;G are smooth functions of .x; y/ satisfying E > 0, G > 0 and
EG � F 2 > 0. The associated inner product on each tangent space is given by�
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where the symmetric positive definite matrix

(1.1) � D

�
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F G

�
represents � in the basis f @

@x
; @
@y
g. In particular, the length of a tangent vector is

given by a @@x C b @@y
 DpEa2 C 2Fab CGb2:

Define two local sections of the complexified cotangent bundle T �X ˝ C by

dz WD dx C i dy

d Nz WD dx � i dy:
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These form a basis for each complexified cotangent space. The local sections
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of the complexified tangent bundle TX ˝C will form the dual basis at each point.
The inner product on TX extends canonically to a Hermitian product on TX ˝C.
The matrix of this Hermitian product in the basis f @

@z
; @
@ Nz
g is given by

(1.2) O� D P � P �;

where
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:

It follows from (1.1), (1.2) and (1.3) that
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Let us introduce the quantities
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� WD
1

42
.E �G C 2iF / D

E �G C 2iF

E CG C
p
EG � F 2

:(1.5)

Note that
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A straightforward computation then shows that
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Since the Hermitian product on TX ˝ C is given by�
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it follows that
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Now a tangent vector A @
@z
C B @

@ Nz
2 TX ˝ C is real (i.e., belongs to TX) if and

only if B D NA. This simply follows from
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C .a � ib/

@
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:

Thus, for real tangent vectors, the formula (1.7) reduces toA @

@z
C NA

@

@ Nz

 D  jAC � NAj:
The last expression suggests that if we are only concerned about lengths of real
tangent vectors, the metric � in the complex basis f @

@z
; @
@ Nz
g can be represented as

(1.8) � D .z/ jdz C �.z/ d Nzj;

with  and � defined by (1.4) and (1.5).

Let us see how the quantities  and � associated with � transform under a
holomorphic change of coordinates z 7! w on X :

.z/ jdz C �.z/ d Nzj D .w/ jdw C �.w/ d Nwj

D .w.z// jw0.z/ dz C �.w.z//w0.z/ d Nzj

D .w.z// jw0.z/j

ˇ̌̌̌
ˇdz C �.w.z//w0.z/w0.z/

d Nz

ˇ̌̌̌
ˇ ;

from which we obtain

.z/ D .w.z// jw0.z/j

�.z/ D �.w.z//
w0.z/

w0.z/

or simply

.z/ jdzj D .w/ jdwj

�.z/
d Nz

dz
D �.w/

d Nw

dw
:(1.9)

It follows that .z/ jdzj and �.z/ d Nz
dz

are well-defined forms on X . Note that
z 7! j�.z/j is a well-defined function on X , even though z 7! �.z/ is not.

DEFINITION 1.1. � D �.z/ d Nz
dz

is called the Beltrami form associated with
the metric �. We say � is a conformal metric if its Beltrami form is identically
zero, in which case � D .z/ jdzj is a positive multiple of the Euclidean metric
in every local coordinate.
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Conformal metrics exist on every Riemann surface. For example, the spherical
metric jdzj=.1 C jzj2/ on OC, the Euclidean metric jdzj on C, C� and the tori
C=ƒ, and the Poincaré metric on hyperbolic Riemann surfaces are all conformal
metrics.

It is clear from (1.8) that two smooth metrics � and O� have the same Beltrami
forms if and only if they belong to the same conformal class, which means O�=�
is a smooth positive function X ! R. Each conformal class is also called
a smooth conformal structure on X . On the other hand, given a Beltrami
form � D �.z/ d Nz

dz
on X , we can pair it with an arbitrary conformal metric

.z/ jdzj to construct the metric � D .z/ jdz C �.z/ d Nzj with the Beltrami
form �. The canonical conformal structure of X is the one represented by any
conformal metric .z/jdzj on X . It corresponds to the zero Beltrami form �0
which vanishes identically in every local coordinate on X .

COROLLARY 1.2. There is a one-to-one correspondence between smooth
conformal structures on X and smooth Beltrami forms � D �.z/ d Nz

dz
which

satisfy j�.z/j < 1 in every local coordinate z on X .

Here is a more geometric description for a Beltrami form � as a field of
concentric ellipses on the tangent bundle of X . Fix a local coordinate z D
x C iy Š .x; y/ near a point p 2 X and let � D �.z/ d Nz

dz
in this coordinate.

Consider the family of “circles” E.p/ D fv 2 TpX W kvk D const:g which
depends only on � and not on the choice of the representative metric. If v D
a @
@x
C b @

@y
D .aC ib/ @

@z
C .a � ib/ @

@ Nz
, then the “circles” kvk D const: in TpX

correspond to the loci j.aC ib/C �.a � ib/j D const: in the real .a; b/-plane.
Setting � WD rei� and � WD .aC ib/e�i�=2, we obtain the loci j� C r N�j D const:
in the �-plane, which is just the family of concentric ellipses with the minor axis
along the real direction and the major axis along the imaginary direction, and with
the ratio of the major to minor axis equal to .1C r/=.1 � r/ (compare Fig. 1.1).
Transferring this family back to the .a; b/-plane, it follows that E.p/ is a family
of concentric ellipses in TpX with

angle of elevation of the minor axis D
1

2
arg�

ratio of the major to minor axis D
1C j�j

1 � j�j
:

Note that in this geometric description, the zero Beltrami form �0 corresponds to
the field of round circles j�j2 D a2 C b2 D const: in the .a; b/-plane.
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FIGURE 1.1. Geometric interpretation of a Beltrami form as a
field of ellipses on the tangent bundle.

�=2

E.p/

a

b

� D .aC ib/e�i�=2
1=.1 � r/

1=.1C r/

To summarize, we have at least three ways of thinking about Beltrami forms
on a Riemann surface X : (i) as a .�1; 1/-tensor on X obeying the transformation
rule (1.9); (ii) as a conformal structure on X ; (iii) as a field of concentric ellipses
on the real tangent bundle TX .

Now let X and Y be Riemann surfaces and f W X ! Y be a diffeomorphism.
Given a Beltrami form � on Y , the pull-back f �� is defined as the Beltrami
form of the pull-back metric f ��, where � is any metric with the Beltrami form
�. It is easy to see that the definition is independent of the choice of �. The pull-
back operator on Beltrami forms has all the functorial properties of the similar
operator on metrics. For example, if f W X ! Y and g W Y ! Z are given
diffeomorphisms and � is a Beltrami form on Z, then .g ı f /�� D f �.g��/, or
in short .g ı f /� D f � ı g�.

Let us derive a local formula for the pull-back operator. Express f W X ! Y

locally as w D f .z/, where z and w are local coordinates on X and Y , and let



6 1 The Measurable Riemann Mapping Theorem

� D .w/ jdw C �.w/ d Nwj be a metric on Y . Then

f �� D .w.z// jwz dz C w Nz d Nz C �.w.z// .wz dz C Nw Nz d Nz/j

D .w.z// j.wz C �.w.z//w Nz/ dz C .w Nz C �.w.z//wz/ d Nzj

D .w.z// .wz C �.w.z//w Nz/

ˇ̌̌̌
dz C

w Nz C �.w.z//wz

wz C �.w.z//w Nz
d Nz

ˇ̌̌̌
;

where we have used the fact that

Nwz D w Nz and Nw Nz D wz:

It follows that

(1.10) f �
�
�.w/

d Nw

dw

�
D
w Nz C �.w.z//wz

wz C �.w.z//w Nz

d Nz

dz
:

In particular, the pull-back �f D f ��0 of the zero Beltrami form on Y is given
by

(1.11) �f D f
�.�0/ D

w Nz

wz

d Nz

dz
:

The coefficient �f .z/ D w Nz=wz is called the complex dilatation of f in local
coordinates z and w. By the Cauchy-Riemann equations, �f D �0 if and only if
f is a conformal isomorphism.

Now (1.10) can be written as

(1.12) f �
�
�.w/

d Nw

dw

�
D

�f .z/C �.w.z//
wz

wz

1C �f .z/�.w.z//
wz

wz

d Nz

dz
:

Thus, at the level of coefficients, the pull-back operator on Beltrami forms acts
pointwise as the disk automorphism

(1.13) � 7!
�.� ı f /C �f

1C �f �.� ı f /
; where � D

wz

wz
has modulus 1:

COROLLARY 1.3. The pull-back operator � 7! f �� acts pointwise on the
coefficients of Beltrami forms as an automorphism of the unit disk. When f
is holomorphic, this automorphism reduces to a rotation about the origin. In
particular, f W X ! Y is a conformal isomorphism if and only if f ��0 D �0.

The central question now is

Question. Given a Beltrami form � on a Riemann surface X , does there exist a
new complex structure on X with respect to which � is the zero Beltrami form?
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If such a complex structure exists, we say that it is compatible with � and we
call � integrable. The surface X with the complex structure compatible with �
is denoted by X�. Here is an equivalent question

Question. Is there a Riemann surface Y and a diffeomorphism f W X ! Y such
that f ��0 D �?

Any such f is said to integrate �. Geometrically, the condition means that
the derivative Df pulls back the field of round circles on Tf .p/Y (generated by
�0) to the given field of ellipses on TpX generated by �. To see the equivalence
of the two formulations, suppose f W X ! Y integrates � and let X� be X
equipped with the pull-back of the complex structure of Y under f (whose local
coordinates are the composition of f with the local coordinates of Y ). Conversely,
if X� exists, the identity map X ! X� clearly integrates �.

If there are two diffeomorphisms f W X ! Y and g W X ! Z that integrate
� in the above sense, then .g ı f �1/��0 D �0, which by Corollary 1.3 means
g ı f �1 W Y ! Z is a conformal isomorphism. This shows that the Riemann
surface Y in the integrability question is unique up to biholomorphism.

By (1.11) the integrability of Beltrami forms can be easily expressed in local
coordinates. If f W X ! Y integrates �, then �f D f ��0 D �. Writing f
locally as w D f .z/, this translates into �f .z/ D w Nz=wz D �.z/, or

(1.14) w Nz D �wz:

This partial differential equation is called the Beltrami equation. When � D
�0 D 0, it reduces to the classical Cauchy-Riemann equation w Nz D 0. There is
along history of attempts to solve the Beltrami equation under various regularity
conditions on �. The most basic result is the following

THEOREM 1.4 (Gauss). Suppose � is a smooth complex-valued function
defined in the unit disk D which satisfies j�.z/j < 1 at every z 2 D. Then
there exists a diffeomorphism f W D

Š
�! f .D/ � C such that f Nz D �fz in D.

Note that either f .D/ D C or f .D/ is conformally isomorphic to D by the
Riemann Mapping Theorem. Thus, after post-composing with a biholomorphism
if necessary, we can assume that f is a diffeomorphism D! D or D! C; in
other words, either D� Š C or D� Š D.

EXAMPLE 1.5. Let �.z/ D k in D where 0 � k < 1 is a constant. The affine map

f W D! U WD

�
.x; y/ 2 R2 W

x2

.1C k/2
C

y2

.1 � k/2
< 1

�



8 1 The Measurable Riemann Mapping Theorem

defined by w D f .z/ D z C k Nz integrates � since clearly w Nz D k wz . Post-composing w with a
biholomorphism U ! D given by the Riemann Mapping Theorem, we obtain a diffeomorphism
D! D which integrates �. In particular, D� Š D.

EXAMPLE 1.6. Let �.z/ D z2 in D. The diffeomorphism f W D! C defined by w D f .z/ D
z=.1 � jzj2/ integrates � since

w Nz

wz
D

z2

.1 � jzj2/2

1

.1 � jzj2/2

D z2:

It follows that D� Š C.

The key difference between the above examples is that k�k1 < 1 in the
former while k�k1 D 1 in the latter. It turns out that .D; �/ is always isomorphic
to D if k�k1 < 1. This will be a corollary of the measurable Riemann mapping
theorem.

COROLLARY 1.7. Every smooth Beltrami form on a Riemann surface is
integrable.

PROOF. Let � be a smooth Beltrami form on a Riemann surface X . Cover X
with countably many charts Ui with local coordinates zi W Ui ! D. Let �i be the
pull-back of restriction�jUi

under z�1i . The Beltrami forms�i on D are integrable
by Theorem 1.4, so there are diffeomorphisms fi W D! Vi WD fi.D/ � C such
that f �i �0 D �i . Now equip X with a new complex structure in which the
gi WD fi ı zi W Ui ! Vi are the local coordinates. Note that the change of
coordinates are indeed holomorphic since if Ui \ Uj ¤ ;, then

.gj ı g
�1
i /
��0 D Œ.f

�1
i /� ı .z�1i /� ı z�j ı f

�
j � �0

D Œ.f �1i /� ı .z�1i /� ı z�j � �j D Œ.f
�1
i /� ı .z�1i /�� �

D .f �1i /��i D �0:

Evidently, the Beltrami form � in this new complex structure is identically zero
since in Ui it is seen as .g�1i /

�� D �0. �

�1.2. Quasiconformal maps

In many applications, one is bound to consider conformal structures on
Riemann surfaces which are only measurable. The integrability question for
such conformal structures still makes sense, but maps that would integrate such
structures can no longer be smooth. Simple examples show that measurable
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conformal structures are not generally integrable. However, with an extra
boundedness assumption, they are integrable and the maps which integrate them
are homeomorphisms which enjoy some degree of regularity. This leads to the
idea of quasiconformal homeomorphisms between Riemann surfaces. In the
category of quasiconformal maps rigidity and flexibility coexist, and that makes
them an extremely powerful tool.

Roughly speaking, quasiconformal maps are a.e. differentiable homeomor-
phisms with bounded small-scale geometry. More specifically, a quasiconformal
map f W U ! V between planar domains has three essential features: (i) it is an
orientation-preserving homeomorphism; (ii) it is differentiable at almost every
p 2 U and the derivative Df.p/ W R2 ! R2 is non-singular; (iii) Df.p/ pulls
back round circles to ellipses whose eccentricity is bounded independent of p.
This is in essence what quasiconformality means, except that the a.e. existence
of the derivative should be replaced by a stronger condition called “ACL” (see
Definition 1.8 below) or, equivalently, by f having locally integrable partial
derivatives in the sense of distributions. Although a bit technical at first, this is
just the right degree of regularity one needs to exclude pathologies and have a
well-behaved class of maps.

It will be convenient to begin the discussion with quasiconformal maps
between planar domains and consider the case of Riemann surfaces later.

DEFINITION 1.8. Let U and V be non-empty open sets in C. An orientation-
preserving homeomorphism f W U ! V is called quasiconformal if

(i) f is absolutely continuous on lines (ACL). This means that for every
closed rectangle Œa; b� � Œc; d � � U , the restriction x 7! f .x C iy/ is
absolutely continuous on Œa; b� for a.e. y 2 Œc; d �, and the restriction
y 7! f .x C iy/ is absolutely continuous on Œc; d � for a.e. x 2 Œa; b�.

(ii) the partial derivatives of f (which by (i) exist a.e.) satisfy

jf Nzj � kjfzj a.e. in U;

for some constant 0 � k < 1.
To make the attribute more quantitative, we say that f is K-quasiconformal,
where K WD .1C k/=.1 � k/ � 1.

EXAMPLE 1.9. Let K � 1 and define f W C! C by

f .x C iy/ WD

(
x C iKy if y � 0
x C iy if y < 0:

:
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Then f is ACL, with

fz.x C iy/ D

(
.1CK/=2 if y > 0
1 if y < 0

and f Nz.x C iy/ D

(
.1 �K/=2 if y > 0
0 if y < 0

(note that the partial derivatives do not exist along the real axis unless K D 1). Thus, jf Nz=fzj �
.K � 1/=.K C 1/ and f is K-quasiconformal.

EXAMPLE 1.10. Let 0 � k < 1 and define f W C! C by

f .z/ WD

(
z C k Nz if jzj � 1
z C k=z if jzj > 1:

Then f is easily seen to be ACL, with

fz.z/ D

(
1 if jzj < 1
1 � k=z2 if jzj > 1

and f Nz.z/ D

(
k if jzj < 1
0 if jzj > 1

(again, the partial derivatives do not exist along the unit circle unless k D 0). It follows that
jf Nz=fzj � k, so f is K-quasiconformal with K D .1C k/=.1 � k/.

Below we list some basic properties of quasiconformal maps. For a complete
treatment and the proofs, we refer the reader to [A] or [LV]. Suppose f W U ! V

is K-quasiconformal. Then

(QC1) f is differentiable almost everywhere in U , that is, for a.e. p 2 U ,

f .p C z/ D f .p/C fz.p/ z C f Nz.p/ Nz C ".z/;

where ".z/=z ! 0 as z ! 0.

(QC2) The Jacobian
Jac.f / D jfzj2 � jf Nzj2

is positive a.e. and locally integrable in U , and the formulaZ
E

Jac.f / dx dy D area.f .E//

holds for every measurable set E � U . In particular, f maps sets of
area zero to sets of area zero.

(QC3) The partial derivatives fz and f Nz are locally square-integrable in U . In
fact, since jf Nzj � kjfzj for k D .K � 1/=.K C 1/, the definition of
Jac.f / shows that

jfzj
2
�

1

1 � k2
Jac.f / and jf Nzj

2
�

k2

1 � k2
Jac.f /:
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(QC4) The partial derivatives fz and f Nz are the distributional derivatives also,
that is,Z

U

fz ' D �

Z
U

f 'z and
Z
U

f Nz ' D �

Z
U

f ' Nz

for every compactly supported smooth test function ' W U ! C.

(QC5) For every topological annulus A � U ,

K�1 mod.A/ � mod.f .A// � K mod.A/:

Surprisingly, this geometric condition is in fact equivalent to K-
quasiconformality.

(QC6) The inverse f �1 W V ! U is K-quasiconformal. This follows at once
from (QC5).

(QC7) If g W V ! W is K 0-quasiconformal, the composition g ı f W U ! W

is KK 0-quasiconformal. This is also immediate from (QC5).

EXAMPLE 1.11. The unit disk D and the complex plane C are not quasiconformally
homeomorphic: If there were a quasiconformal map f W D ! C, then by (QC5) the annulus
f .fz W 1=2 < jzj < 1g/ would have a finite modulus. But this annulus contains the punctured
disk fz W jzj > rg for a large r , whose modulus is infinite.

The following result will be frequently used:

THEOREM 1.12 (Weyl’s Lemma). A 1-quasiconformal map is conformal.

Note that 1-quasiconformality of f means that the Cauchy-Riemann equation
f Nz D 0 holds a.e., and to conclude that f is conformal in this case, it is essential
that we assume it is ACL.

EXAMPLE 1.13. Let � W Œ0; 1� ! Œ0; 1� be any continuous non-decreasing function, with
�.0/ D 0, �.1/ D 1, and � 0.x/ D 0 a.e. (the graph of such � is called a devil’s staircase). Extend
� to a map R! R by setting �.x C n/ D �.x/C n for n 2 Z. Define f W C! C by

f .x C iy/ WD x C i.y C �.x//:

Then f is a homeomorphism which satisfies the Cauchy-Riemann equation f Nz D 0 a.e. in
C. However, f is not conformal. This does not contradict Weyl’s Lemma since � fails to be
absolutely continuous, so f is not ACL, hence not quasiconformal.

The standard chain rule formulas applies to compositions of quasiconformal
maps. Suppose f W U ! V and g W V ! W are quasiconformal. By (QC7),
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g ı f W U ! W is quasiconformal. By (QC1), there are sets of measure zero
A � U and B � V away from which f and g are differentiable. Furthermore,
by (QC2) and (QC6), f �1.B/ has measure zero. Thus, g ı f is differentiable
outside the measure zero set A [ f �1.B/ and the following chain rule formulas
hold:

.g ı f /z D .gz ı f / fz C .g Nz ı f / Nfz

.g ı f / Nz D .gz ı f / f Nz C .g Nz ı f / Nf Nz

If f W U ! V is quasiconformal, (QC2) says that Jac.f / D jfzj2�jf Nzj2 > 0
a.e., so the partial derivative fz must be non-zero a.e. inU . Inspired by the smooth
case treated before, we call the measurable function

�f WD f Nz=fz

the complex dilatation of f . The measurable function

Kf WD
1C j�f j

1 � j�f j
D
jfzj C jf Nzj

jfzj � jf Nzj

is called the real dilatation of f . Thus f is K-quasiconformal precisely when
kKf k1 � K or k�f k1 � k WD .K � 1/=.K C 1/.

The chain rule gives the following formula for the complex dilatation of the
composition of quasiconformal maps:

�gıf D
.gz ı f / f Nz C .g Nz ı f / Nf Nz

.gz ı f / fz C .g Nz ı f / Nfz

D
f Nz C .�g ı f / fz

fz C .�g ı f / f Nz

D
�f C .�g ı f /

fz

fz

1C �f .�f ı g/
fz

fz

which, for good reason, is similar to the local formula for the pull-back operator
in (1.13).

Here is a list of a few deeper properties of quasiconformal mappings:

(QC8) (Mori) If f W D! D is K-quasiconformal with f .0/ D 0, then

jf .z/ � f .w/j � 16 jz � wj1=K .z; w 2 D/:

As a corollary, it follows that quasiconformal maps are locally Hölder: If
f W U ! V is K-quasiconformal, for every compact set E � U there
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exists a constant C D C.E;K/ > 0 such that

jf .z/ � f .w/j � C jz � wj1=K .z; w 2 E/:

(QC9) The family of all K-quasiconformal maps defined in a domain U which
fix three marked points in U is compact. As a result, for any sequence
ffng ofK-quasiconformal maps inU there is a sequence f�ng of Möbius
maps such that f�n ı fng converges locally uniformly in U to a K-
quasiconformal map.

(QC10) (Astala) If f W D! D is K-quasiconformal with f .0/ D 0, then

area.f .E// � C area.E/

for every measurable set E � D. Here C D C.K/ > 0. As a corollary,
if f W U ! V is K-quasiconformal, then Jac.f / 2 Lploc.U / for every
1 < p < K=.K � 1/.

(QC11) (Astala) Quasiconformal maps distort Hausdorff dimension by a bounded
factor: If f W U ! V is K-quasiconformal, E � U , dim.E/ D ı and
dim.f .E// D ı0, then

1

K
�

1
ı 0
�
1
2

1
ı
�
1
2

� K:

In particular, f preserves sets of dimension 0 and 2.

The transition to Riemann surfaces is now straightforward. An orientation-
preserving homeomorphism f W X ! Y between Riemann surfaces is
K-quasiconformal if w ı f ı z�1 is K-quasiconformal for each pair of
local coordinates z on X and w on Y for which this composition makes
sense. Much of the notions discussed above for diffeomorphisms, as well
as the local computations, remain valid for quasiconformal maps, as they are
differentiable almost everywhere. Thus, we can speak of measurable Riemannian
metrics, conformal structures and Beltrami forms on Riemann surfaces, the pull-
back of a such conformal structures or Beltrami forms under quasiconformal
homeomorphisms, and the integrability condition for measurable Beltrami forms.
It follows that if f W X ! Y is a quasiconformal homeomorphism and � is
measurable Beltrami form on X , then

f integrates �” �f D f
��0 D �” f Nz D �fz a.e.

We say that a measurable conformal structure, or its associated Beltrami form �

has bounded dilatation if

k�k1 D sup
z2X

j�.z/j < 1:
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Thus, f W X ! Y is quasiconformal if and only if the Beltrami form �f D

f �.�0/ has bounded dilatation.

The following theorem was proved by Morrey-Ahlfors-Bers:

THEOREM 1.14 (The measurable Riemann mapping theorem). Let � be a
measurable Beltrami form on the Riemann sphere OC with k�k1 D k < 1. Then

(i) There exists a unique quasiconformal homeomorphism f D f Œ�� W OC!
OC which fixes 0; 1;1 and solves the Beltrami equation �f D �.

(ii) f is a C1 (resp. real analytic) diffeomorphism if � is C1 (resp. real
analytic).

(iii) The normalized solution f Œt��, given by part (i), depends holomorphi-
cally on the complex parameter t 2 D.0; 1=k/.

COROLLARY 1.15 (MRMT, the disk case). Let � be a measurable complex-
valued function on the unit disk D with k�k1 < 1. Then there exists a
quasiconformal homeomorphism f W D ! D which satisfies the Beltrami
equation f Nz D �fz almost everywhere. Moreover, f is unique up to post-
composition with a conformal automorphism of D.

PROOF. Extend � to OC by setting �.z/ D 0 for jzj > 1 and apply
Theorem 1.14. The restriction to D of the normalized solution given by that
theorem will provide a quasiconformal solution h W D! h.D/ of the Beltrami
equation. We have h.D/ ¤ C since C and D are not quasiconformally
homeomorphic, so by the Riemann mapping theorem there is a conformal map
g W h.D/ ! D. The composition f D g ı h will then be the required map.
(Alternatively, extend � to OC symmetrically by setting �.z/ D �.1= Nz/ for
jzj > 1, find the similar map h and use symmetry to show that h.D/ D D
already.) �

The local case of the theorem easily yields the general version:

COROLLARY 1.16 (MRMT, the Riemann surface case). Let � be a measurable
Beltrami form with bounded dilatation on a Riemann surface X . Then there exists
a Riemann surface Y and a quasiconformal homeomorphism f W X ! Y such
that �f D f �.�0/ D �. If g W X ! Z is another such homeomorphism, the
map g ı f �1 W Y ! Z is a biholomorphism.
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Problems.

(1) Let f W U ! V be quasiconformal. Show that

�f �1 ı f D �
fz

fz
�f :

(2) Suppose � is a Beltrami form on a Riemann surface X that is locally of
bounded dilatation in the sense that

sup
z2K

j�j.z/ < 1

for every compact set K � X . Show that � is integrable in the following sense:
There is a Riemann surface Y and a homeomorphism f W X ! Y such that
(i) each p 2 X has a neighborhood Up for which f jUp

is quasiconformal; (ii)
f ��0 D �.

(3) Let � be a smooth Beltrami form in D which is rotationally symmetric so that
j�j depends only on r D jzj. Show that the Riemann surface D� is conformally
isomorphic to D or C according as

lim
a!1�

Z a

1
2

1C j�j

1 � j�j

dr

r

is finite or infinite.

(4) Study compactness properties of QS0.M/.

(5) Every homeomorphism h W R ! R can be written as h.x/ D h.0/C
R x
0 d�

for some positive measure � without atoms. Show that h is quasisymmetric iff
� is a doubling measure.

Research problem.

(1) Let � be a smooth Beltrami form in D. Develop a method for deciding whether
the Riemann surface D� is conformally isomorphic to D or C.





CHAPTER 2

Some Applications of Quasiconformal Maps

�2.1. The diffeomorphism group of the 2-sphere

We begin our application tour by proving a classical result on the homotopy
type of the diffeomorphism group of the 2-sphere [S]:

THEOREM 2.1 (Smale). The group DiffC.S2/ of smooth orientation-preserving
diffeomorphisms of the 2-sphere has a strong deformation retraction onto the
rotation subgroup SO.3/.

Recall that a space X has a strong deformation retraction onto a subspace Y
if there is a continuous map F W X � Œ0; 1�! X such that

� F.x; 0/ D x and F.x; 1/ 2 Y for all x 2 X ;
� F.y; t/ D y for all y 2 Y and t 2 Œ0; 1�.

It is easily seen that in this case X and Y have the same homotopy type; in fact,
the inclusion Y ,! X is a homotopy equivalence. Thus, Smale’s theorem shows
that DiffC.S2/ has the homotopy type of a finite cell-complex. This is also true
for DiffC.S3/ (Hatcher) and is known to be false for all dimensions � 7.

Let us identify S2 with the Riemann sphere OC via, say, the stereographic
projection. The idea of the proof consists of first constructing a strong deformation
retraction from DiffC. OC/ onto the Möbius group Aut. OC/ and then follow it by
another from Aut. OC/ onto SO.3/.

PROOF. Let ' 2 DiffC. OC/ and � D �' , so k�k1 < 1. Let ˆ 2 Aut. OC/ be
the unique Möbius map which agrees with ' on the set f0; 1;1g. Consider the
smooth Beltrami forms t� on OC for 0 � t � 1, and set 't WD ˆ ı 'Œt�� (here
'Œt�� W OC ! OC is the unique solution of the Beltrami equation w Nz D .t�/wz
which fixes 0; 1;1). Then t 7! 't is a continuous path in DiffC. OC/ that connects
'0 D ˆ to '1 D '. The map F W DiffC. OC/ � Œ0; 1� ! DiffC. OC/ defined by
F.'; t/ WD '1�t is a strong deformation retraction onto Aut. OC/.
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Next we construct a strong deformation retraction G W Aut. OC/ � Œ0; 1� !
Aut. OC/ onto the rotation subgroup SO.3/. The map H W DiffC. OC/ � Œ0; 1� !
DiffC. OC/ defined by

H.'; t/ WD

(
F.'; 2t/ t 2 Œ0; 1=2�

G.F.'; 1/; 2t � 1/ t 2 Œ1=2; 1�

will then be a strong deformation retraction of DiffC. OC/ onto SO.3/.

LEMMA 2.2. Every Möbius map ' 2 Aut. OC/ can be decomposed uniquely as

' D � ı ˛ ı ˇ;

where � 2 SO.3/, ˛.z/ D rz for some r > 0, and ˇ.z/ D z C � for some � 2 C.

Assuming this lemma for a moment, it is easy to construct G: Given ' 2 Aut. OC/,
take the decomposition ' D � ı ˛ ı ˇ as in the lemma, and define

G.'; t/ WD � ı ˛t ı ˇt ;

where ˛t.z/ WD r1�t z and ˇt.z/ WD zC .1� t /� . This proves Theorem 2.1. �

PROOF OF LEMMA 2.2: The decomposition is immediate when '.1/ D 1, for
in this case '.z/ D az C b for some a; b 2 C with a ¤ 0, and we can take

�.z/ D
a

jaj
z; ˛.z/ D jajz; and ˇ.z/ D z C

b

a
:

For the general case, first post-compose ' with an element of SO.3/ to keep1
fixed, and then decompose the resulting map as above.

To show uniqueness, suppose ' has two such decompositions, say

' D �1 ı ˛1 ı ˇ1 D �2 ı ˛2 ı ˇ2;

where ˛i.z/ D riz and ˇi D z C �i . The map

��12 ı �1 D ˛2 ı ˇ2 ı .˛1 ı ˇ1/
�1
W z 7!

r2

r1
z C r2.�2 � �1/

is in SO.3/ and affine, so it can only be a rotation around the origin. This impliesˇ̌̌̌
r2

r1

ˇ̌̌̌
D 1 and r2.�2 � �1/ D 0;

which gives r1 D r2 and �1 D �2. 2
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�2.2. Quasiconformal conjugacy classes of rational maps

Two rational maps f; g of the Riemann sphere are quasiconformally
conjugate if there is a quasiconformal map ' W OC! OC which satisfies

' ı f D g ı ':

This is clearly an equivalence relation, and each equivalence class under this
relation is called a quasiconformal conjugacy class.

Suppose f; g are quasiconformally conjugate by ' as above. Then the
Beltrami form � D �' is f -invariant. This is simply because g is holomorphic:

f �� D f �.'��0/ D .' ı f /
��0 D .g ı '/

��0

D '�.g��0/ D '
��0 D �:

Conversely, suppose � is an f -invariant Beltrami differential with k�k1 < 1.
Then a similar argument shows that the branched covering g D 'Œ��ıf ı.'Œ��/�1

preserves �0, so it is locally 1-quasiconformal away from the branch points, hence
is a rational map.

Thus, there is a correspondence between f -invariant Beltrami forms of
bounded dilatation and rational maps which are quasiconformally conjugate
to f (the correspondence need not be one-to-one).

As a basic dynamical application of the preceding remark, we show

THEOREM 2.3. The quasiconformal conjugacy class of a rational map f is
always path-connected.

Of course this conjugacy class could reduce to a point, in which case f
is called quasiconformally rigid. For example, in the family of normalized
quadratic polynomials ffc.z/ D z2 C cgc2C, the map fc is quasiconformally
rigid if and only if c belongs to the boundary of the Mandelbrot set or is the center
of the hyperbolic component.

PROOF. Suppose ' is a quasiconformal conjugacy between f and another
rational map g and set � D �' . Then, for every 0 � t � 1,

f �.t�/ D tf �� D t�:

Here we have used the fact that the pull-back operator f � acts as a rotation about
the origin and hence is linear. As before, set 't D ˆ ı'Œt�� whereˆ is the unique
Möbius map which agrees with ' on f0; 1;1g. Then t 7! gt WD 't ı f ı .'t/

�1

is a path within the quasiconformal conjugacy class of f which connects g0 D
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ˆ ı f ıˆ�1 to g1 D g. Joining this path to t 7! ˆt ı f ıˆ
�1
t in which t 7! ˆt

is a path in Aut. OC/ which connects id to ˆ, we obtain a path from f to g. �

�2.3. Local fixed-point theory

Let f .z/ D �z C O.z2/ be the germ of a holomorphic map in the plane
fixing the origin. The multiplier � D f 0.0/ is clearly invariant under smooth
conjugacies. On the other hand, z 7! 2z is topologically (even quasiconformally)
conjugate to z 7! 3z.

A remarkable theorem of Naishul asserts that when the origin is an indifferent
fixed point in the sense that j�j D 1, then the multiplier � is invariant under
topological conjugacies. Here we prove a weaker version of this result by using
the measurable Riemann mapping theorem.

THEOREM 2.4. Let f .z/ D �z C O.z2/ and g.z/ D �z C O.z2/ be
quasiconformally conjugate near 0. If j�j D 1, then � D �.

PROOF. Let ' be a quasiconformal homeomorphism defined near 0 which
satisfies '.0/ D 0 and ' ı f D g ı '. Consider the Beltrami form � D �'
defined near the origin, which is clearly f -invariant. Let ı > 0 be small and
extend � to C by setting �.z/ D 0 for jzj > ı. Consider the Beltrami forms t�
for jt j < 1=k�k1. Since f �� D � and f � is linear, it follows that f �.t�/ D
t� near 0. Let 't D 'Œt��. Then gt D 't ı f ı '

�1
t is a 1-quasiconformal

homeomorphism near the origin, hence holomorphic there. Moreover, t 7! gt.z/

is holomorphic for each fixed z sufficiently close to 0 [Caution: This is true but
non-trivial, as the inverse '�1t may not depend holomorphically on t]. Writing
gt.z/ D �t z C O.z

2/, it follows that t 7! �t is also holomorphic. But gt is
conjugate to f whose fixed point at z D 0 is indifferent, so j�t j D 1 for all
t 2 D.0; 1C "/. The open mapping theorem now implies that t 7! �t is constant.
Since '0 D id, we have g0 D f so �0 D �. Similarly, '1 ı '�1 is conformal, so
g1 is holomorphically conjugate to g, so �1 D �. We conclude that � D �. �

As another application, consider the problem of linearizing holomorphic
maps near attracting or repelling fixed points. A classical theorem of Koenigs
asserts that every holomorphic germ f .z/ D �z C O.z2/ with j�j ¤ 0; 1 is
holomorphically linearizable. The classical proof, for j�j < 1, consists of showing
that the sequence f��nf ın.z/gn�1 converges uniformly in a neighborhood of the
origin to a holomorphic map ˆ. It is then clear that ˆ0.0/ D 1 and ˆ.f .z// D
�ˆ.z/. Here we give a proof of this result by applying the measurable Riemann
mapping theorem.
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THEOREM 2.5 (Koenigs). If f .z/ D �z CO.z2/ is a holomorphic germ with
j�j ¤ 0; 1, there exists a holomorphic change of coordinate z 7! ˆ.z/ defined
near the origin such that ˆ.0/ D 0 and ˆ.f .z// D �ˆ.z/.

PROOF. Without losing generality assume j�j < 1 (otherwise consider the
local inverse of f ). Choose a disk U centered at 0, small enough so that f .U /
is compactly contained in U . It follows by induction that f ın.U / is compactly
contained in f ın�1.U / for all n � 1, and that diamf ın.U / ! 0 as n ! 1.
Let L denote the linear contraction z 7! z=2. Take a smooth diffeomorphism
 W A D fz 2 C W 1=2 � jzj � 1g ! U r f .U / subject only to the condition
 .L.z// D f . .z// for jzj D 1. Extend  to a homeomorphism D ! U by
defining  .0/ D 0 and  .Lın.z// D f ın. .z// for all n � 1 and all z 2 A.
Then  is quasiconformal and satisfies

 .L.z// D f . .z// for all z 2 D:

Now consider the Beltrami form � D � on D. Extend � to the entire plane by
taking pull-backs under L. The resulting Beltrami form (still denoted by �) is
easily seen to be L-invariant and with bounded dilatation. The quasiconformal
map g D 'Œ�� ıL ı .'Œ��/�1 W C! C preserves �0, hence is holomorphic. Since
g.0/ D 0, we must have g.z/ D �z for some � ¤ 0.

Set ˆ D ' ı  �1. Then ˆ is a 1-quasiconformal homeomorphism defined
in a neighborhood of the fixed point 0. By Weyl’s Lemma, ˆ is holomorphic.
Moreover, ˆ conjugates f to g near 0, so � D g0.0/ D f 0.0/ D �. �

�2.4. Quasiconformal surgery on rational maps

Here is an outline of the construction of Herman rings by surgery, following
Shishikura. Suppose f is a rational map of degree d � 2 with a fixed Siegel disk
� of rotation number � . Take another rational map g of degree d 0 � 2 with a
fixed Siegel disk �0 of rotation number �� . We will construct a rational map F ,
of degree d C d 0 � 1, with a Herman ring of rotation number � . The idea is to
cut out invariant disks from � and �0 and paste the resulting spheres-with-hole
along their boundaries to obtain a sphere. There is an obvious action on this
sphere coming from the action of f and g on the pieces. We apply the measurable
Riemann mapping theorem to realize this action as a rational map.

More precisely, let � W �
Š
�! D.0; 2/ and  W �0

Š
�! D.0; 2/ be conformal

isomorphisms which satisfy

�.f .z// D e2�i��.z/ and  .g.z// D e�2�i� .z/:
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Consider the invariant Jordan curves

 D fz 2 � W j�.z/j D 1g and  0 D fz 2 �0 W j .z/j D 1g:

The map h W  !  0 defined by h.z/ D  �1.�.z// is a smooth orientation-
reversing diffeomorphism which satisfies h.f .z// D g.h.z// for all z 2  .
Extend h to a quasiconformal homeomorphism h W OC ! OC with the following
properties:

� h maps int./ to ext. 0/ and ext./ to int. 0/. (Here “int” refers to the
complementary component of the invariant curve which contains the
center of the Siegel disk and “ext” refers to the other component.)

� h is conformal in a neighborhood of OCr .� \ h�1.�0//.

Define

QF .z/ D

(
f .z/ if z 2  [ ext./

.h�1 ı g ı h/.z/ if z 2 int./

It is easy to check that QF is a degree d C d 0 � 1 branched covering of the
sphere which is locally quasiconformal away from its branch points. Moreover,
A D � \ h�1.�0/ is a “topological Herman ring” of rotation number � for QF ,
and F is holomorphic in a neighborhood of OCr F �1.A/.

To conjugate QF to a rational map, define a Beltrami form � on OC as follows.
First define � on A by

� D

(
�0 on A \ ext./

h��0 on A \ int./

Clearly, QF W A ! A preserves �. Extend � to the union
S
n�1
QF �n.A/ by

pulling back via the appropriate iterate of QF . Note that only the first pull-back
to QF �1.A/r A can possibly increase the dilatation of �; all further pull-backs
are taken by iterates of QF which are holomorphic and so do not change the
dilatation. On the complement of this union, set � D �0. The Beltrami form �

defined this way is clearly QF -invariant and has bounded dilatation. It follows that
F D 'Œ�� ı QF ı .'Œ��/�1 is a rational map with a Herman ring 'Œ��.A/ of rotation
number � .

�2.5. The no wandering domain theorem

We present a simplified version of Sullivan’s proof of Fatou’s no wandering
domain conjecture, following N. Baker and C. McMullen.
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THEOREM 2.6 (Sullivan). Let f 2 Ratd with d � 2. Then every Fatou
component U of f is eventually periodic, i.e., there exist n > m > 0 such that
f ın.U / D f ım.U /.

The idea of the proof is as follows: Assuming there exists a wandering
Fatou component U (or simply a wandering domain), we change the conformal
structure of the sphere along the grand orbit of U to find an infinite-dimensional
family of rational maps of degree d , all quasiconformally conjugate to f . This is
a contradiction since the space Ratd of rational maps of degree d , as a Zariski
open subset of CP2dC1, is finite-dimensional. The eventual periodicity statement
for entire maps is false. For example, the transcendental map z 7! z C sin.2�z/
has wandering domains.

LEMMA 2.7 (Baker). If U is a wandering domain for a rational map f , then
f ın.U / is simply connected for all large n.

PROOF. Let Un D f ın.U /. Replacing U by Uk for some large k if necessary,
we may assume that no Un contains a critical point of f , so that f ın W U ! Un
is a covering map for all n. We can also arrange that 1 2 U . Then the Un
are disjoint subsets of C r U for n � 1, so area.Un/ ! 0 as n ! 1. But
ff ınjU g is a normal family, so every convergent subsequence of this sequence
must be a constant function. In particular, diam.f ın.K//! 0 for every compact
set K � U . Take any loop  � U and set n D f ın./ � Un. By the above
argument diam.n/! 0. IfBn is the union of the bounded components of Crn,
it follows that diam.Bn/ ! 0 also. Since f .Bn/ is open, @f .Bn/ � nC1, and
diamf .Bn/ ! 0, we must have f .Bn/ � BnC1 for large n. In particular, the
iterated images of Bn are subsets of C r U for large n. Montel’s theorem then
implies Bn � F.f /, which gives Bn � Un. Thus n is null-homotopic in Un for
large n. Since f ın W U ! Un is a covering map, we can lift this homotopy to U ,
which proves U is simply connected. �

Let a rational map f have a wandering domainU . In view of the above lemma,
we can assume that Un D f ın.U / is simply connected and f W Un ! UnC1 is a
conformal isomorphism for all n � 0. Given an L1 Beltrami form � defined in
U , we can construct an f -invariant L1 Beltrami form on OC as follows. Use the
forward and backward iterates of f to spread � along the grand orbit

GO.U / D fz 2 OC W f ın.z/ 2 Um for some n;m � 0g:

On the complement OC r GO.U /, set � D �0. The resulting Beltrami form is
defined a.e. on bC, it satisfies f �� D � by the way it is defined, and k�k1 <1
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since spreading �jU along GO.U / by the iterates of the holomorphic map f
does not change the dilatation. Now consider the deformation t� for complex
t with jt j < ", where " > 0 is small enough to guarantee kt�k1 < 1. Since f
is holomorphic, f � acts as a linear rotation, so f �.t�/ D t�. Let 't D 'Œt�� W
OC ! OC be the unique solution of the Beltrami equation w Nz D .t�/wz which
fixes 0; 1;1. Then ft D 't ı f ı '�1t is a rational map of degree d and t 7! ft
is holomorphic, with f0 D f . The infinitesimal variation

w.z/ D
d

dt

ˇ̌̌
tD0
ft.z/

defines a holomorphic vector field whose value at z lies in the tangent space
Tf .z/bC. In other words, w is a holomorphic section of the pull-back bundle
f �.TbC/ which in turn can be identified with a tangent vector in Tf Ratd . This
is the so-called infinitesimal deformation of f induced by �. We say that �
induces a trivial deformation if w D 0 everywhere.

Another way of describing w is as follows: First consider the unique
quasiconformal vector field solution to the equation

@v D � with v.0/ D v.1/ D v.1/ D 0:

This is precisely the infinitesimal variation .d=dt/jtD0 't.z/ of the normalized
solution of the Beltrami equation. It is not hard to check that w D ıf v, where

ıf v.z/ D v.f .z// � f
0.z/v.z/

measures the deviation of v from being f -invariant. Note in particular that ıf v
is holomorphic even though v is only quasiconformal, and that w D ıf v depends
linearly on �, a fact that is not immediately clear from the first description of w.
It follows that � induces a trivial deformation if and only if v is f -invariant.

The triviality condition ıf v D 0 forces v to vanish on the Julia set J.f /. In
fact, let z0 7! z1 7! � � � 7! zn D z0 be a repelling cycle of f with multiplier
�. Then the condition ıf v D 0 implies v.zjC1/ D f 0.zj /v.zj / for all j D
0; : : : ; n � 1, so

n�1Y
jD0

v.zj / D � �

n�1Y
jD0

v.zj /:

The assumption j�j > 1 then implies v.zj / D 0 for some j , hence for all j .
Since J.f / is the closure of repelling cycles and v is continuous, we conclude
that v.z/ D 0 for all z 2 J.f /.
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The above construction gives well-defined linear maps

B.U /
i
,! B.bC; f / D

�! Tf Ratd

Here B.U / is the space of L1 Beltrami forms in U , B.bC; f / is the space of f -
invariant L1 Beltrami forms on bC, and D is the linear operator D� D w D ıf v
constructed above.

LEMMA 2.8. B.U / contains an infinite-dimensional subspace N.U / of com-
pactly supported Beltrami forms with the following property: If � 2 N.U /
satisfies � D @v for some quasiconformal vector field v with vj@U D 0, then
� D 0.

Assuming this lemma for a moment, let us see how we can prove Theorem 2.6.
Consider the subspace N.U / for the simply connected wandering domain U and
restrict the above diagram to this subspace. If D.�/ D 0 for some � 2 N.U /,
or in other words if � induces a trivial deformation, that means the normalized
solution v to @v D � is f -invariant. Hence v D 0 on J.f / and in particular
on the boundary of U . By the property of N.U /, � D 0. This means that the
infinite-dimensional subspace N.U / injects into Tf Ratd whose dimension is
2d C 1. The contradiction shows that no wandering domain can exist.

It remains to prove Lemma 2.8. Let us first consider the corresponding
problem for the unit disk D. Let QN.D/ � B.D/ be the linear span of the Beltrami
forms �k.z/ D Nzk d Nzdz for k � 0. The vector field

Vk.z/ D

8<:
1
kC1
NzkC1 @

@z
jzj < 1

1
kC1

z�.kC1/ @
@z

jzj � 1

solves the equation @Vk D �k in D. Let � D @v 2 QN.D/ and vj@D D 0, and
take the appropriate linear combination V of the Vk which solves @V D �. Then
V � v is holomorphic in D and agrees with V on the boundary @D. This is
impossible if V j@D has any negative power of z in it. Hence � D 0. To get the
compact support condition, let N.D/ � B.D/ be obtained by restricting elements
of QN.D/ to the disk jzj < 1=2 and extending them to be zero on 1=2 � jzj < 1. If
� D @v 2 N.D/ and vj@D D 0, then v has to vanish in the annulus 1=2 < jzj < 1
since it is holomorphic there. In particular, it is zero on jzj D 1=2. Now the same
argument applied to the disk jzj < 1=2 shows � D 0.
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For the general case, consider a conformal isomorphism  W D
Š
�! U with

the inverse � D  �1 and define N.U / D ��.N.D//. Let v be a quasiconformal
vector field such that � D @v 2 N.U / and vj@U D 0. Then ��.v/ D .v ı  /= 0

is a quasiconformal vector field in D which is holomorphic near the boundary @D
and v. .z// ! 0 as jzj ! 1. By the reflection principle, v ı  is identically
zero near @D. Since  �� D @ ��.v/ 2 N.D/, we must have  �� D 0, which
implies � D 0.

REMARK 2.9. Sullivan’s original argument had to deal with two essential difficulties: (i) the
possibility of U being non simply connected, perhaps of infinite topological type; (ii) the possible
complications near the boundary of U , for example when @U is not locally-connected. He
addressed the former by using a direct limit argument, and the latter by using Carathéodory’s
theory of “prime ends.” Both of these difficulties are miraculously bypassed in the present proof.

�2.6. Holomorphic motions

DEFINITION 2.10. Let A � OC be a set with at least 4 points and T be a
connected complex manifold with base point t0. A holomorphic motion of A
over .T; t0/ is a map ' W T � A! OC such that

(i) z 7! '.t; z/ is injective for each t 2 T .

(ii) t 7! '.t; z/ is holomorphic for each z 2 A.

(iii) '.t0; z/ D z for every z 2 A.

In other words, f't.�/ D '.t; �/gt2T is a holomorphic family of injections of A
into OC, with 't0 D idA.

A few remarks on this definition are in order:

� There is no assumption on the joint continuity of ' in .t; z/, or even continuity
in z for fixed t . They follow automatically from the �-Lemma to be discussed
below.

� For our purposes, we usually take .T; t0/ D .D; 0/ and call ' a holomorphic
motion over D.

� We can always assume that the motion is normalized in the sense that 0; 1;1
belong to A and they remain fixed under the motion. To see this, take distinct
points z1; z2; z3 in A and let ˛; ˇt 2 Aut. OC/ be determined by

˛.0/ D z1 ˛.1/ D z2 ˛.1/ D z3
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and
ˇt.'t.z1// D 0 ˇt.'t.z2// D 1 ˇt.'t.z3// D1:

Then  t D ˇt ı 't ı ˛ is a normalized holomorphic motion of ˛�1.A/.

EXAMPLE 2.11. Let A D f0; 1;1; ag and p W D ! OC r f0; 1;1g be the holomorphic
universal covering map which satisfies p.0/ D a. Then f'tgt2D defined by

't .0/ D 0 't .1/ D 1 't .1/ D1 't .a/ D p.t/

is a holomorphic motion of A over D.

EXAMPLE 2.12. Let A be the lattice Z˚ iZ of Gaussian integers and define f'tgt2H by

't .mC in/ D mC tn

is a holomorphic motion of A over .H; i/.

EXAMPLE 2.13. Let f W OC! OC be a quasiconformal homeomorphism and � D �f . For jt j <
1, let 't D 'Œt�� be the normalized solution of the Beltrami equation given by Theorem 1.14. Then
't is a holomorphic motion of OC over D. This shows that every quasiconformal homeomorphism
of the sphere canonically produces a holomorphic motion of the sphere.

EXAMPLE 2.14. Let U � C be a Jordan domain. Suppose there are conformal isomorphisms
f it W U ! U it .i D 0; 1/ depending holomorphically on a parameter t 2 D such that U 0t and U 1t
are disjoint subsets of U . For every finite word i1 � � � in of 0’s and 1’s, let

U
i1���in
t D f

in
t ı � � � ı f

i1
t .U /

and define the Cantor sets
Kt D

\
n�1

[
i1���in

U
i1���in
t :

The Kt determine a holomorphic motion of the base Cantor set K0 over D. To see this, take a
z 2 K0 and suppose that it is represented by the infinite word i1i2i3 : : : so that

z D U
i1
0 \ U

i1i2
0 \ U

i1i2i3
0 \ � � �

Define
'.t; z/ D U

i1
t \ U

i1i2
t \ U

i1i2i3
t \ � � � 2 Kt :

Note that '.t; z/ is the local uniform limit of the sequence of holomorphic functions 'n.t/ D
f
in
t ı � � � ı f

i1
t , so it depends holomorphically on t . It is now easy to check that .t; z/ 7! '.t; z/

is a holomorphic motion of K0 over D.

Let E � OC be a set with at least 4 points. Let us say that a homeomorphism
f W E ! f .E/ � OC is quasiconformal if there exists an M > 0 such that

dist OCrf0;1;1g
�
Œf .z1/; f .z2/; f .z3/; f .z4/�; Œz1; z2; z3; z4�

�
�M
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for all quadruples .z1; z2; z3; z4/ in E. Here dist OCrf0;1;1g is the hyperbolic
distance in the thrice punctured sphere and Œz1; z2; z3; z4� is the cross ratio defined
by

Œz1; z2; z3; z4� D
z3 � z1

z2 � z1
�
z4 � z2

z4 � z3
:

It can be shown that when E D OC, this definition of quasiconformality agrees
with the standard one given in �1.2.

THEOREM 2.15 (The �-Lemma of Mañe-Sad-Sullivan and Lyubich). A
holomorphic motion ' W D � A! OC extends uniquely to a holomorphic motion
ˆ W D � A! OC. Moreover, ˆ is continuous on D � A and ˆt W A! ˆt.A/ is a
quasiconformal homeomorphism for each t 2 D.

The analogue of the �-Lemma for continuous motions is certainly false. As
an example, let A D f1=kgk�1 and define the continuous motion ' W R�A! OC
by '.t; 1=k/ D 1=k C ikt . Evidently, ' has no continuous extension to R � A.

PROOF. Without losing generality, assume that the motion is normalized. By
Montel’s theorem,

F D ft 7! '.t; z/ W z 2 Ag

is a normal family of holomorphic functions D! OC, so it has compact closure
F in Hol.D; OC/. Moreover, if f; g 2 F are distinct, then f .t/ ¤ g.t/ for all
t 2 D. To see this, take fn; gn 2 F such that fn ¤ gn, fn ! f and gn ! g,
and note that t 7! fn.t/ � gn.t/ is nowhere vanishing by the injectivity property
of holomorphic motions. It follows from Hurwitz’s theorem that t 7! f .t/�g.t/

is nowhere vanishing as well.

For each t 2 D consider the continuous map

pt W F ! OC pt.f / D f .t/:

By the above observation, pt is injective. Since F is compact, it follows that pt is
a homeomorphism onto its image, which is easily seen to be the closure of 't.A/.
Now

ˆ.t; z/ D pt ı p
�1
0 .z/ .t; z/ 2 D � A;

extends ' to a motion of A.

The definition of the compact-open topology on F shows that for each r < 1,
the family fptgjt j�r is equicontinuous, so the same must be true of the family
fˆtgjt j�r . It follows that ˆ is continuous on the product D � A.
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Finally, choose a quadruple .z1; z2; z3; z4/ in A and define a holomorphic
map g W D! OCr f0; 1;1g by

g.t/ D Œˆt.z1/; ˆt.z2/; ˆt.z3/; ˆt.z4/�:

By the Schwarz lemma,

dist OCrf0;1;1g.g.t/; g.0// � distD.t; 0/;

which implies that the distance in OC r f0; 1;1g between the cross ratios
Œˆt.z1/; ˆt.z2/; ˆt.z3/; ˆt.z4/� and Œz1; z2; z3; z4/� is at most

log
�
1C jt j

1 � jt j

�
:

This proves that each ˆt W A! ˆt.A/ is quasiconformal. �

THEOREM 2.16 (The Improved �-Lemma of Slodkowski). A holomorphic
motion ' W D � A! OC extends to a holomorphic motion ˆ W D � OC! OC. The
extended motionˆ is continuous on D� OC andˆt W OC! OC isKt -quasiconformal
for each t 2 D, where Kt D 1Cjt j

1�jt j
.

It was proved by Sullivan and Thurston that there exists a universal constant
0 < a < 1 such that every holomorphic motion of A over D extends to a
holomorphic motion of the sphere over the smaller disk D.0; a/. Bers and
Royden proved that one can take a D 1=3. Moreover, their extended motion over
D.0; 1=3/ has the advantage of being canonical in the sense that the Beltrami
form �ˆt

is harmonic in each component of OC r A. (A Beltrami form � on a
hyperbolic Riemann surface X is called harmonic if � D �=�2, where � is a
holomorphic quadratic differential on X and � is the density of the hyperbolic
metric.) With this additional property, they proved that the extended motion is
unique.

As Sullivan and Thurston observed, to obtain the improved �-Lemma, it
suffices to prove the following holomorphic axiom of choice: Given a finite
set A and a point a … A, every holomorphic motion of A over D extends to a
holomorphic motion of A [ fag over D.

In the original version of the �-Lemma, D can be replaced with an arbitrary
connected complex manifold, as essentially the same proof works. In the Bers-
Royden version, D can be replaced with the unit ball in any complex normed
linear space. In Slodkowski’s improved �-Lemma, D cannot be replaced for free,
as the next example shows.
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EXAMPLE 2.17. (Douady) Let T D OC r f0; 1;1g, with the base point t0 D 2. Let A D
f0; 1; 2;1g and define a holomorphic motion ' W T � A! OC by

't .0/ D 0 't .1/ D 1 't .1/ D1 't .2/ D t:

This motion is maximal in the sense that it cannot be extended to a holomorphic motion of any
larger set over T . To see this, it suffices to show that every holomorphic map f W T ! T has a
fixed point. Assume by way of contradiction that such a fixed point free map exists. By Picard’s
great theorem, none of 0; 1;1 can be an essential singularity for f , so f extends to a rational
map f W OC! OC of degree d � 1. As f �1f0; 1;1g � f0; 1;1g, f acts bijectively on f0; 1;1g.
By the assumption all the d C 1 fixed points of f belong to f0; 1;1g. If d D 1, f is a Möbius
map which fixes one of 0; 1;1 with multiplicity 2 and swaps the other two. But any Möbius map
with a double fixed point is conjugate to z 7! z C 1 so it cannot swap a pair of distinct points. If
d � 2, each fixed point in f0; 1;1g is a critical point of order d � 1 and in particular is a simple
(i.e., multiplicity 1) fixed point. This forces d C 1 � 3, or d D 2. But then each of 0; 1;1 is a
simple fixed point of f as well as a critical point. This is impossible since a degree 2 rational
map has only 2 critical points.

Problems.

(1) Let f 2 Ratd have an attracting fixed point p0 with multiplier �0. Show that
for every � 2 D� there exists f� 2 Ratd , quasiconformally conjugate to f ,
with an attracting fixed point p� of multiplier �.
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