QUATERNIONS AND ROTATIONS

S. ZAKERI, 8-11-22

The universal covering map $SU(2) \rightarrow SO(3)$ is ubiquitous in mathematics and physics and can be understood mechanically from the isomorphic covering $S^3 \rightarrow RP^3$ given by identifying pairs of antipodal points. This expository note will describe a known alternative view of this covering map using quaternions, which shows it is essentially inherited from the angle-doubling map of the circle.¹

§ 1. Quaternions. Recall that a *quaternion* is a symbol of the form

(1)
$$q = t + xi + yj + zk$$

where t, x, y, $z \in \mathbb{R}$ and the units i, j, k satisfy the relations

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$.

With the obvious addition and multiplication generated by the above relations, quaternions form a division ring (i.e., a "non-commutative field") that is traditionally denoted by \mathbb{H} .

The *conjugate* of q in (1) is defined by

$$q^* = t - xi - yj - zk.$$

Conjugation satisfies the basic property

 $(q_1q_2)^* = q_2^*q_1^*.$

The *real part* and *vector part* of q are defined by

$$Re(q) = \frac{1}{2}(q + q^*) = t$$

Ve(q) = $\frac{1}{2}(q - q^*) = xi + yj + zk.$

Thus, for every $q \in \mathbb{H}$ we have the unique decompositions

$$q = \operatorname{Re}(q) + \operatorname{Ve}(q)$$
 and $q^* = \operatorname{Re}(q) - \operatorname{Ve}(q)$.

The *norm* of q is the non-negative number

$$\|q\| = (qq^*)^{1/2} = (t^2 + x^2 + y^2 + z^2)^{1/2}.$$

¹The century old idea of representing rotations by quaternions has been revitalized in our time by applications in modern computer graphics.

It is multiplicative in the sense that

$$\|q_1q_2\| = \|q_1\| \|q_2\|.$$

Every non-zero $q \in \mathbb{H}$ has a multiplicative inverse q^{-1} given by

$$q^{-1} = rac{q^*}{\|q\|^2}.$$

§ 2. Vectors. Consider the additive subgroup $\mathbb{H}_0 \subset \mathbb{H}$ consisting of all quaternions with vanishing real part:

$$\mathbb{H}_{0} = \{\mathbf{q} \in \mathbb{H} : \operatorname{Re}(\mathbf{q}) = 0\} = \{\mathbf{q} \in \mathbb{H} : \mathbf{q}^{*} = -\mathbf{q}\}.$$

In other words, $q \in \mathbb{H}_0$ if and only if q = Ve(q). For this reason, we refer to elements of \mathbb{H}_0 as *vectors*. The terminology is justified since there is a natural isomorphism $\mathbb{H}_0 \to \mathbb{R}^3$ given by

$$xi + yj + zk \mapsto (x, y, z).$$

Under this isomorphism, the norm of a vector $v \in \mathbb{H}_0$ is the same as its Euclidean norm, and

$$\|v\|^2 = vv^* = -v^2.$$

In particular

(2) $v^2 = -1$ for every unit vector v.

A brief computation shows that the Euclidean scalar and cross products on \mathbb{R}^3 have quaternionic expressions

$$u \cdot v = -\operatorname{Re}(uv) = -\frac{1}{2}(uv + vu)$$
$$u \times v = \operatorname{Ve}(uv) = \frac{1}{2}(uv - vu).$$

In particular,

(3) $u, v \text{ are orthogonal} \iff uv = -vu$

(4) $u, v \text{ are parallel} \iff uv = vu.$

Thus, the quaternion product of vectors in \mathbb{H}_0 beautifully records both the scalar and cross products:

$$uv = \underbrace{-u \cdot v}_{\text{real part}} + \underbrace{u \times v}_{\text{vector part}}$$

Observe that \mathbb{H}_0 is not closed under quaternion multiplication. In fact, if $u, v \in \mathbb{H}_0$, then $uv \in \mathbb{H}_0$ if and only if u, v are orthogonal.

§ 3. Unit quaternions. Consider now the non-abelian multiplicative subgroup $\mathbb{H}_1 \subset \mathbb{H} \setminus \{0\}$ consisting of all quaternions with norm 1:

$$\mathbb{H}_1 = \{q \in \mathbb{H} : \|q\| = 1\} = \{q \in \mathbb{H} : q^* = q^{-1}\}.$$

Topologically \mathbb{H}_1 is homeomorphic to the unit 3-sphere

$$S^3 = \{(t, x, y, z) \in \mathbb{R}^4 : t^2 + x^2 + y^2 + z^2 = 1\}$$

(indeed, this is the easiest way of showing that S³ admits the structure of a Lie group). The following result will be used in the next section:

Lemma 1. Every $q \in \mathbb{H}_1$ can be written as

$$q = \cos \theta + u \sin \theta$$
,

where $u \in \mathbb{H}_0 \cap \mathbb{H}_1$ and $\theta \in \mathbb{R}/(2\pi\mathbb{Z})$. If q = 1 or -1, then $\theta = 0$ or $\pi \pmod{2\pi\mathbb{Z}}$ but u is completely arbitrary. If $q \neq \pm 1$, then the pair (u, θ) is uniquely determined up to the sign change $(-u, -\theta)$.

The proof is an easy exercise.

Elements of \mathbb{H}_1 can also be represented by 2×2 complex matrices as follows. Every $q = t + xi + yj + zk \in \mathbb{H}_1$ can be written as q = a + bj, where a = t + xi and b = y + zi are a pair of complex numbers with $|a|^2 + |b|^2 = ||q||^2 = 1$. The quaternion multiplication of $q_1 = a + bj$ and $q_2 = c + dj$ turns into

$$q_1q_2 = ac + adj + bjc + bjdj = ac + adj + b\overline{c}j - bd$$
$$= (ac - b\overline{d}) + (ad + b\overline{c})j.$$

This suggests the representation of $q = a + bj \in \mathbb{H}_1$ as the matrix

$$\underline{\mathbf{q}} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ -\overline{\mathbf{b}} & \overline{\mathbf{a}} \end{bmatrix}$$

and shows that the map $\mathbb{H}_1 \to SU(2)$ defined by $q \mapsto \underline{q}$ is a group isomorphism. Note that under this isomorphism the quaternion units 1, i, j, k map to

$$\underline{\mathbf{1}} = \mathbf{I} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \qquad \underline{\mathbf{i}} = \begin{bmatrix} \mathbf{i} & \mathbf{0} \\ \mathbf{0} & -\mathbf{i} \end{bmatrix} \qquad \underline{\mathbf{j}} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{0} \end{bmatrix} \qquad \underline{\mathbf{k}} = \begin{bmatrix} \mathbf{0} & \mathbf{i} \\ \mathbf{i} & \mathbf{0} \end{bmatrix}.$$

Moreover, the conjugate q^* corresponds to the adjoint matrix \underline{q}^* (i.e., the conjugate transpose of q).

§ 4. Rigid rotations of $\mathbb{H}_0 \cong \mathbb{R}^3$.

Lemma 2. For every $q \in \mathbb{H}_1$ the conjugation $T_q : v \mapsto qvq^{-1}$ acts on \mathbb{H}_0 . Under the natural isomorphism $\mathbb{H}_0 \cong \mathbb{R}^3$, T_q is a rigid rotation about the origin.

Proof. If $v \in \mathbb{H}_0$, then

$$(q\nu q^{-1})^* = (q^{-1})^*\nu^*q^* = -q\nu q^{-1},$$

so $q\nu q^{-1} \in \mathbb{H}_0$. Thus, T_q maps \mathbb{H}_0 to itself. Moreover,

$$\|q\nu q^{-1}\| = \|q\| \|\nu\| \|q^{-1}\| = \|\nu\|,$$

so T_q is an isometry of \mathbb{R}^3 fixing the origin, i.e., an element of O(3). Since $T_1 = id$ and since $q \mapsto T_q$ is continuous on the connected space $\mathbb{H}_1 \cong S^3$, we conclude that T_q is orientation-preserving for every $q \in \mathbb{H}_1$, so $T_q \in SO(3)$. \Box

Lemma 3. Let $q \in \mathbb{H}_1$ and consider the representation $q = \cos \theta + u \sin \theta$ as in Lemma 1. Then T_q is the rotation of \mathbb{R}^3 by the angle 2 θ about the axis u.

Notice that in this statement the ambiguity of the pair (u, θ) is absorbed by the ambiguity of the axis and angle of a rotation. In fact, if $q \neq \pm 1$, then the pair (u, θ) is uniquely determined up to the sign \pm , consistent with the fact that the rotation of \mathbb{R}^3 by 2θ about u is the same as the rotation by -2θ about -u. On the other hand, if q = 1 or -1, then $\theta = 0$ or $\pi \pmod{2\pi\mathbb{Z}}$ and u is arbitrary, but again the ambiguity is not an issue because in this case $T_q = id$.

Proof. It suffices to assume $q \neq \pm 1$. Note that since $q \in \mathbb{H}_1$,

$$q^{-1} = q^* = \cos \theta - u \sin \theta.$$

If v is parallel to u, then

$$\begin{aligned} T_{q}(\nu) &= q\nu q^{-1} = q\nu q^{*} = (\cos\theta + u\sin\theta)\nu(\cos\theta - u\sin\theta) \\ &= \nu\cos^{2}\theta + (u\nu - \nu u)\cos\theta\sin\theta - u\nu u\sin^{2}\theta \\ &= \nu(\cos^{2}\theta - u^{2}\sin^{2}\theta) \qquad (by(4)) \\ &= \nu(\cos^{2}\theta + \sin^{2}\theta) = \nu \end{aligned}$$

Suppose now that v is a unit vector orthogonal to u, so uv = -vu by (3). Set $w = u \times v = -vu$. Then the triple (v, w, u) forms a positive orthonormal basis for $\mathbb{H}_0 \cong \mathbb{R}^3$. The computation

$$T_{q}(v) = v \cos^{2} \theta + (uv - vu) \cos \theta \sin \theta - uvu \sin^{2} \theta$$
$$= v \cos^{2} \theta + 2w \cos \theta \sin \theta + vu^{2} \sin^{2} \theta$$
$$= v \cos^{2} \theta - v \sin^{2} \theta + 2w \cos \theta \sin \theta$$
$$= v \cos(2\theta) + w \sin(2\theta)$$

shows that $T_q(v)$ is the rotation of v in the plane u^{\perp} by the angle 2 θ .

Corollary 4. The map $\Phi : SU(2) \to SO(3)$ defined by $\Phi(\underline{q}) = T_q$ is a surjective homomorphism with kernel $\{\pm I\}$:

$$1 \mapsto \{\pm I\} \rightarrow SU(2) \rightarrow SO(3) \rightarrow 1.$$

Topologically, Φ *is a degree 2 covering map.*

Proof. Φ is a homomorphism since

$$\mathsf{T}_{\mathfrak{q}_1\mathfrak{q}_2}(\nu) = (\mathfrak{q}_1\mathfrak{q}_2)\nu(\mathfrak{q}_1\mathfrak{q}_2)^* = \mathfrak{q}_1(\mathfrak{q}_2\nu\mathfrak{q}_2^*)\mathfrak{q}_1^* = \mathsf{T}_{\mathfrak{q}_1}(\mathsf{T}_{\mathfrak{q}_2}(\nu)),$$

and it is surjective by Lemma 3. The condition $\Phi(\underline{q}) = id$ means qv = vq for every $v \in \mathbb{H}_0$. Writing q = t + u where $t = \operatorname{Re}(q) \in \mathbb{R}$, $u = \operatorname{Ve}(q) \in \mathbb{H}_0$, this condition translates to uv = vu or $u \times v = 0$ for every $v \in \mathbb{H}_0$. Thus u = 0 and q = t. Since ||q|| = |t| = 1, we obtain $q = \pm 1$.

If $\Phi(\underline{\mathbf{q}}) = \mathsf{T}$, then $\Phi^{-1}(\mathsf{T}) = \pm \underline{\mathbf{q}}$ and there is a small neighborhood U of $\underline{\mathbf{q}}$ which is disjoint from $-\mathsf{U}$. It follows that Φ is a local homeomorphism. Since SU(2) is compact, Φ is automatically proper, and we conclude that Φ is a covering map of degree 2.

§ 5. Geometric interpretation of Φ . The topology of the covering map $\Phi : SU(2) \rightarrow SO(3)$ is usually explained by considering homeomorphisms $SU(2) \cong S^3$, $SO(3) \cong RP^3$ and looking at the isomorphic covering map $S^3 \rightarrow RP^3$ obtained by identifying antipodal pairs. A (perhaps superficially) alternative view is given by the above quaternionic description which reveals more vividly that the 2-to-1 nature of Φ is due to the angle doubling map of the circle. Here is how:

For simplicity let us identify $\mathbb{H}_0 \cap \mathbb{H}_1$ with the unit sphere $S^2 \subset \mathbb{R}^3$ and use the notation $S^1 = \mathbb{R}/(2\pi\mathbb{Z})$. Consider the surjection $f: S^2 \times S^1 \to SU(2)$ given by $f(u, \theta) = \underline{q}$, where $q = \cos \theta + u \sin \theta$ as in Lemma 1. Evidently SU(2) can be identified with the quotient space $(S^2 \times S^1)/f$. Note that f collapses the horizontal sections $S^2 \times \{0\}$ and $S^2 \times \{\pi\}$ to the points $\pm I$ and maps all other sections homeomorphically onto their images. Moreover, $f = f \circ \sigma$, where σ is the involution $(u, \theta) \mapsto (-u, -\theta)$. This shows that SU(2) is obtained topologically from $S^2 \times S^1$ by collapsing the sections $S^2 \times \{0\}, S^2 \times \{\pi\}$ and then taking the quotient under σ (see the figure).

Similarly, consider the surjection $g: S^2 \times S^1 \to SO(3)$, where $g(u, \theta)$ is the rotation of \mathbb{R}^3 by the angle θ about the axis u. Then SO(3) is homeomorphic to the quotient space $(S^2 \times S^1)/g$. Since g collapses the horizontal section $S^2 \times \{0\}$ to the point I and satisfies $g = g \circ \sigma$, it follows that SO(3) is obtained from $S^2 \times S^1$ by collapsing the section $S^2 \times \{0\}$ and then taking the quotient under σ .

Now the degree 2 covering map $\varphi : S^2 \times S^1 \to S^2 \times S^1$ defined by $(u, \theta) \mapsto (u, 2\theta)$ commutes with σ and sends the fibers of f to the fibers of g, so it descends to a degree 2 covering map SU(2) \to SO(3) which, by Lemma 3, is precisely Φ :

The figure shows that the trivial horizontal foliation of $S^2 \times S^1$ induces a foliation \mathcal{F}_1 of $SU(2) - \{\pm I\}$ by 2-spheres (this is just the foliation of $S^3 - \{0, \infty\} = \mathbb{R}^3 - \{0\}$ by concentric spheres centered at the origin). It also induces a foliation \mathcal{F}_2 of $SO(3) - \{I\}$ whose leaves are all 2-spheres except for a single leaf homeomorphic to \mathbb{RP}^2 (the one corresponding to rotations by the angle π , shown in yellow). The covering map Φ carries \mathcal{F}_1 onto \mathcal{F}_2 . More precisely, every spherical leaf of \mathcal{F}_2 lifts under Φ to the disjoint union of two spherical leaves of \mathcal{F}_1 on which Φ acts homeomorphically. The single leaf of \mathcal{F}_2 homeomorphic to \mathbb{RP}^2 lifts to a single spherical leaf of \mathcal{F}_1 on which Φ acts as a degree 2 covering.

6

It is instructive to compare this situation with the following 1-dimensional toy model: Let $\sigma : S^1 \to S^1$ be the involution $\sigma(\theta) = -\theta \pmod{2\pi Z}$. The doubling map $\varphi : S^1 \to S^1$ defined by $\varphi(\theta) = 2\theta \pmod{2\pi Z}$ commutes with σ , so it induces a well-defined map $\Phi : S^1/\sigma \to S^1/\sigma$ which is no longer a covering. In fact, the map $\theta \mapsto x = \cos \theta$ induces a homeomorphism $S^1/\sigma \to [-1, 1]$ under which Φ will be conjugate to the Chebyshev polynomial $x \mapsto 2x^2 - 1$, which nearly misses being a 2-to-1 covering due to the presence of the critical point at x = 0.

Department of Mathematics, Queens College of CUNY, 65-30 Kissena Blvd., Queens, New York 11367, USA

The Graduate Center of CUNY, 365 Fifth Ave., New York, NY 10016, USA *E-mail address*: saeed.zakeri@qc.cuny.edu