
QUATERNIONS AND ROTATIONS

S. ZAKERI, 8-11-22

The universal covering map SU(2) → SO(3) is ubiquitous in mathematics

and physics and can be understood mechanically from the isomorphic

covering S3 → RP3 given by identifying pairs of antipodal points. This

expository note will describe a known alternative view of this covering

map using quaternions, which shows it is essentially inherited from the

angle-doubling map of the circle.
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§ 1. Quaternions. Recall that a quaternion is a symbol of the form

(1) q = t+ xi+ yj+ zk

where t, x, y, z ∈ R and the units i, j, k satisfy the relations

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j.

With the obvious addition andmultiplication generated by the above relations,

quaternions form a division ring (i.e., a “non-commutative field”) that is

traditionally denoted by H.

The conjugate of q in (1) is defined by

q∗ = t− xi− yj− zk.

Conjugation satisfies the basic property

(q1q2)
∗ = q∗2q

∗
1 .

The real part and vector part of q are defined by

Re(q) = 1
2
(q+ q∗) = t

Ve(q) = 1
2
(q− q∗) = xi+ yj+ zk.

Thus, for every q ∈ H we have the unique decompositions

q = Re(q) + Ve(q) and q∗ = Re(q) − Ve(q).

The norm of q is the non-negative number

‖q‖ = (qq∗)1/2 = (t2 + x2 + y2 + z2)1/2.

1
The century old idea of representing rotations by quaternions has been revitalized in our

time by applications in modern computer graphics.
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It is multiplicative in the sense that

‖q1q2‖ = ‖q1‖ ‖q2‖.

Every non-zero q ∈ H has a multiplicative inverse q−1
given by

q−1 =
q∗

‖q‖2
.

§ 2. Vectors. Consider the additive subgroup H0 ⊂ H consisting of all

quaternions with vanishing real part:

H0 = {q ∈ H : Re(q) = 0} = {q ∈ H : q∗ = −q}.

In other words, q ∈ H0 if and only if q = Ve(q). For this reason, we refer to

elements ofH0 as vectors. The terminology is justified since there is a natural

isomorphism H0 → R3 given by

xi+ yj+ zk 7→ (x, y, z).

Under this isomorphism, the norm of a vector v ∈ H0 is the same as its

Euclidean norm, and

‖v‖2 = vv∗ = −v2.

In particular

(2) v2 = −1 for every unit vector v.

A brief computation shows that the Euclidean scalar and cross products on

R3 have quaternionic expressions

u · v = −Re(uv) = −1
2
(uv+ vu)

u× v = Ve(uv) = 1
2
(uv− vu).

In particular,

u, v are orthogonal ⇐⇒ uv = −vu(3)

u, v are parallel ⇐⇒ uv = vu.(4)

Thus, the quaternion product of vectors in H0 beautifully records both the

scalar and cross products:

uv = −u · v︸ ︷︷ ︸
real part

+ u× v︸ ︷︷ ︸
vector part

Observe that H0 is not closed under quaternion multiplication. In fact, if

u, v ∈ H0, then uv ∈ H0 if and only if u, v are orthogonal.
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§ 3. Unit quaternions. Consider now the non-abelian multiplicative

subgroup H1 ⊂ H \ {0} consisting of all quaternions with norm 1:

H1 = {q ∈ H : ‖q‖ = 1} = {q ∈ H : q∗ = q−1}.

Topologically H1 is homeomorphic to the unit 3-sphere

S3 = {(t, x, y, z) ∈ R4 : t2 + x2 + y2 + z2 = 1}

(indeed, this is the easiest way of showing that S3 admits the structure of a

Lie group). The following result will be used in the next section:

Lemma 1. Every q ∈ H1 can be written as

q = cos θ+ u sin θ,

where u ∈ H0 ∩H1 and θ ∈ R/(2πZ). If q = 1 or−1, then θ = 0 or π (mod 2πZ)
but u is completely arbitrary. If q 6= ±1, then the pair (u, θ) is uniquely determined
up to the sign change (−u,−θ).

The proof is an easy exercise.

Elements ofH1 can also be represented by 2×2 complexmatrices as follows.

Every q = t+xi+yj+zk ∈ H1 can be written as q = a+bj, where a = t+xi
and b = y + zi are a pair of complex numbers with |a|2 + |b|2 = ‖q‖2 = 1.
The quaternion multiplication of q1 = a+ bj and q2 = c+ dj turns into

q1q2 = ac+ adj+ bjc+ bjdj = ac+ adj+ bcj− bd

= (ac− bd) + (ad+ bc)j.

This suggests the representation of q = a+ bj ∈ H1 as the matrix

q =

[
a b

−b a

]
and shows that the map H1 → SU(2) defined by q 7→ q is a group

isomorphism. Note that under this isomorphism the quaternion units

1, i, j, kmap to

1 = I =

[
1 0
0 1

]
i =

[
i 0
0 −i

]
j =

[
0 1

−1 0

]
k =

[
0 i
i 0

]
.

Moreover, the conjugate q∗ corresponds to the adjoint matrix q∗ (i.e., the
conjugate transpose of q).
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§ 4. Rigid rotations of H0
∼= R3.

Lemma 2. For every q ∈ H1 the conjugation Tq : v 7→ qvq−1 acts on H0. Under
the natural isomorphism H0

∼= R3, Tq is a rigid rotation about the origin.
Proof. If v ∈ H0, then

(qvq−1)∗ = (q−1)∗v∗q∗ = −qvq−1,

so qvq−1 ∈ H0. Thus, Tq maps H0 to itself. Moreover,

‖qvq−1‖ = ‖q‖ ‖v‖ ‖q−1‖ = ‖v‖,
so Tq is an isometry of R3 fixing the origin, i.e., an element of O(3). Since
T1 = id and since q 7→ Tq is continuous on the connected space H1

∼= S3, we

conclude that Tq is orientation-preserving for everyq ∈ H1, so Tq ∈ SO(3). �

Lemma 3. Let q ∈ H1 and consider the representation q = cos θ + u sin θ as in
Lemma 1. Then Tq is the rotation of R3 by the angle 2θ about the axis u.

Notice that in this statement the ambiguity of the pair (u, θ) is absorbed by

the ambiguity of the axis and angle of a rotation. In fact, if q 6= ±1, then the

pair (u, θ) is uniquely determined up to the sign ±, consistent with the fact

that the rotation of R3 by 2θ about u is the same as the rotation by −2θ about
−u. On the other hand, if q = 1 or −1, then θ = 0 or π (mod 2πZ) and u is

arbitrary, but again the ambiguity is not an issue because in this case Tq = id.

Proof. It suffices to assume q 6= ±1. Note that since q ∈ H1,

q−1 = q∗ = cos θ− u sin θ.

If v is parallel to u, then

Tq(v) = qvq
−1 = qvq∗ = (cos θ+ u sin θ) v (cos θ− u sin θ)

= v cos2 θ+ (uv− vu) cos θ sin θ− uvu sin2 θ

= v (cos2 θ− u2 sin2 θ) (by(4))

= v (cos2 θ+ sin
2 θ) = v (by(2))

Suppose now that v is a unit vector orthogonal to u, so uv = −vu by (3). Set

w = u × v = −vu. Then the triple (v,w, u) forms a positive orthonormal

basis for H0
∼= R3. The computation

Tq(v) = v cos
2 θ+ (uv− vu) cos θ sin θ− uvu sin2 θ

= v cos2 θ+ 2w cos θ sin θ+ vu2 sin2 θ

= v cos2 θ− v sin2 θ+ 2w cos θ sin θ

= v cos(2θ) +w sin(2θ)

shows that Tq(v) is the rotation of v in the plane u⊥ by the angle 2θ. �
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Corollary 4. The map Φ : SU(2) → SO(3) defined by Φ(q) = Tq is a surjective
homomorphism with kernel {±I}:

1 7→ {±I} → SU(2) → SO(3) → 1.

Topologically, Φ is a degree 2 covering map.

Proof. Φ is a homomorphism since

Tq1q2(v) = (q1q2)v(q1q2)
∗ = q1(q2vq

∗
2)q
∗
1 = Tq1(Tq2(v)),

and it is surjective by Lemma 3. The condition Φ(q) = id means qv = vq for

every v ∈ H0. Writing q = t+ uwhere t = Re(q) ∈ R, u = Ve(q) ∈ H0, this

condition translates to uv = vu or u × v = 0 for every v ∈ H0. Thus u = 0
and q = t. Since ‖q‖ = |t| = 1, we obtain q = ±1.
If Φ(q) = T , then Φ−1(T) = ±q and there is a small neighborhood U of

q which is disjoint from −U. It follows that Φ is a local homeomorphism.

Since SU(2) is compact,Φ is automatically proper, and we conclude thatΦ is

a covering map of degree 2. �

§ 5. Geometric interpretation of Φ. The topology of the covering map

Φ : SU(2) → SO(3) is usually explained by considering homeomorphisms

SU(2) ∼= S3, SO(3) ∼= RP3 and looking at the isomorphic covering map

S3 → RP3 obtained by identifying antipodal pairs. A (perhaps superficially)

alternative view is given by the above quaternionic description which reveals

more vividly that the 2-to-1 nature ofΦ is due to the angle doubling map of

the circle. Here is how:

For simplicity let us identify H0 ∩H1 with the unit sphere S2 ⊂ R3 and use

the notation S1 = R/(2πZ). Consider the surjection f : S2×S1 → SU(2) given
by f(u, θ) = q, where q = cos θ+u sin θ as in Lemma 1. Evidently SU(2) can

be identified with the quotient space (S2 × S1)/f. Note that f collapses the
horizontal sections S2 × {0} and S2 × {π} to the points ±I and maps all other

sections homeomorphically onto their images. Moreover, f = f ◦ σ, where

σ is the involution (u, θ) 7→ (−u,−θ). This shows that SU(2) is obtained
topologically from S2 × S1 by collapsing the sections S2 × {0}, S2 × {π} and
then taking the quotient under σ (see the figure).

Similarly, consider the surjection g : S2 × S1 → SO(3), where g(u, θ) is the
rotation of R3 by the angle θ about the axis u. Then SO(3) is homeomorphic

to the quotient space (S2 × S1)/g. Since g collapses the horizontal section

S2 × {0} to the point I and satisfies g = g ◦ σ, it follows that SO(3) is obtained
from S2 × S1 by collapsing the section S2 × {0} and then taking the quotient

under σ.
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Now the degree 2 covering map ϕ : S2 × S1 → S2 × S1 defined by (u, θ) 7→
(u, 2θ) commutes with σ and sends the fibers of f to the fibers of g, so it

descends to a degree 2 covering map SU(2) → SO(3) which, by Lemma 3, is

preciselyΦ:

S2 × {0}

S2 × {0}

S2 × {π}

S2 × {π}

S2 × {2π}

S2 × {2π}

ϕ angle doubling on

the second factor

Φ

σ

σ

f

g

collapse

collapse

∼=

∼=

SU(2) ∼= S3

SO(3) ∼= RP3

I

−I

I

glue

The figure shows that the trivial horizontal foliation of S2 × S1 induces
a foliation F1 of SU(2) − {±I} by 2-spheres (this is just the foliation of

S3 − {0,∞} = R3 − {0} by concentric spheres centered at the origin). It also

induces a foliation F2 of SO(3) − {I} whose leaves are all 2-spheres except for
a single leaf homeomorphic to RP2 (the one corresponding to rotations by

the angle π, shown in yellow). The covering mapΦ carries F1 onto F2. More

precisely, every spherical leaf of F2 lifts underΦ to the disjoint union of two

spherical leaves of F1 on which Φ acts homeomorphically. The single leaf of

F2 homeomorphic to RP2 lifts to a single spherical leaf of F1 on which Φ acts

as a degree 2 covering.
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It is instructive to compare this situation with the following 1-dimensional

toy model: Let σ : S1 → S1 be the involution σ(θ) = −θ (mod 2πZ). The

doublingmapϕ : S1 → S1 defined byϕ(θ) = 2θ (mod 2πZ) commuteswithσ,
so it induces a well-defined mapΦ : S1/σ→ S1/σ which is no longer a covering.
In fact, the map θ 7→ x = cos θ induces a homeomorphism S1/σ → [−1, 1]
under whichΦ will be conjugate to the Chebyshev polynomial x 7→ 2x2 − 1,
which nearly misses being a 2-to-1 covering due to the presence of the critical

point at x = 0.
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