SULLIVAN’S PROOF OF FATOU’S NO WANDERING DOMAIN
CONJECTURE

S. ZAKERI

Abstract. A self-contained and simplified version of Sullivan’s proof, following N.
Baker and C. McMullen.

§1. Set up. Let \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) be a rational map of degree \(d \geq 2 \). Let \(J(f) \) and \(F(f) \) denote the Julia set and the Fatou set of \(f \), respectively. Recall that the open
set \(F(f) \) consists of all points near which the family of iterates \(\{f^n\} \) is normal, and
\(J(f) = \hat{\mathbb{C}} \setminus F(f) \). The Julia set also coincides with the closure of the set of repelling
periodic points of \(f \). Every connected component of \(F(f) \) is called a Fatou component. The image \(f(U) \) of a Fatou component \(U \) is itself a Fatou component and the
mapping \(f : U \to f(U) \) is proper of some degree \(\leq d \).

Theorem (Sullivan). Every Fatou component \(U \) of \(f \) is eventually periodic, that is,
there exist \(n > m > 0 \) such that \(f^n(U) = f^m(U) \).

The idea of the proof is as follows: Assuming there exists a wandering Fatou com-
ponent \(U \) (or simply a wandering domain), we change the conformal structure of the
sphere along the grand orbit of \(U \) to find an infinite-dimensional family of rational
maps of degree \(d \), all quasiconformally conjugate to \(f \). This is a contradiction since
the space \(\text{Rat}_d \) of rational maps of degree \(d \), as a Zariski open subset of \(\mathbb{C}P^{2d+1} \), is
finite-dimensional.

Remark. The corresponding statement for entire maps is false. For example, the
map \(z \mapsto z + \sin(2\pi z) \) has wandering domains.

§2. A reduction. The following observation drastically simplifies part of Sullivan’s
original argument.

Lemma (Baker). If \(U \) is a wandering domain, then \(f^n(U) \) is simply-connected for
all large \(n \).

Proof. Let \(U_n = f^n(U) \). Replacing \(U \) by \(U_k \) for some large \(k \) if necessary, we may
assume that no \(U_n \) contains a critical point of \(f \), so that \(f^n : U \to U_n \) is a covering
map for all \(n \). We can also arrange that \(\infty \in U \). Since the \(U_n \) are disjoint subsets of
\(\mathbb{C} \setminus U \) for \(n \geq 1 \), we have \(\text{area}(U_n) \to 0 \). But \(\{f^n|_U\} \) is a normal family, so every
convergent subsequence of this sequence must be a constant function. In particular, \(\text{diam}(f^{on}(K)) \to 0 \) for every compact set \(K \subset U \).

Now take any loop \(\gamma \subset U \) and set \(\gamma_n = f^{on}(\gamma) \subset U_n \). By the above argument \(\text{diam}(\gamma_n) \to 0 \). If \(B_n \) is the union of the bounded components of \(\mathbb{C} \setminus \gamma_n \), it follows that \(\text{diam}(B_n) \to 0 \) also. Since \(f(B_n) \) is open, \(\partial f(B_n) \subset \gamma_{n+1} \), and \(\text{diam}(f(B_n)) \to 0 \), we must have \(f(B_n) \subset \overline{B_{n+1}} \) for large \(n \). In particular, the iterated images of \(B_n \) are subsets of \(\mathbb{C} \setminus U \) for large \(n \). Montel’s theorem then implies \(B_n \subset F(f) \), which gives \(B_n \subset U_n \). Thus \(\gamma_n \) is null-homotopic in \(U_n \) for large \(n \). Since \(f^{on} : U \to U_n \) is a covering map, we can lift this homotopy to \(U \). This proves that \(U \) is simply connected.

\[\square \]

§3. Constructing deformations. Let \(f \) have a wandering domain \(U \). In view of the above lemma, we can assume that \(U_n = f^{on}(U) \) is simply-connected and \(f : U_n \to U_{n+1} \) is a conformal isomorphism for all \(n \geq 0 \). Given an \(L^\infty \) Beltrami differential \(\mu \) defined on \(U \), we can construct an \(f \)-invariant \(L^\infty \) Beltrami differential on \(\hat{\mathbb{C}} \) as follows. Use the forward and backward iterates of \(f \) to spread \(\mu \) along the grand orbit

\[\text{GO}(U) = \{ z \in \hat{\mathbb{C}} : f^{on}(z) \in U_m \text{ for some } n, m \geq 0 \}. \]

On the complement \(\hat{\mathbb{C}} \setminus \text{GO}(U) \), set \(\mu = 0 \). The resulting Beltrami differential is defined almost everywhere on \(\hat{\mathbb{C}} \), it satisfies \(f^* \mu = \mu \) by the way it is defined, and \(\| \mu \|_{\infty} < \infty \) since spreading \(\mu|_U \) along \(\text{GO}(U) \) by the iterates of the holomorphic map \(f \) does not change the dilatation. Now consider the deformation \(\mu_t = t\mu \) for \(|t| < \varepsilon \), where \(\varepsilon > 0 \) is small enough to guarantee \(\| \mu_t \|_{\infty} < 1 \) if \(|t| < \varepsilon \). Note that since \(f \) is holomorphic, \(f^* \) acts as a linear rotation, so \(f^* \mu_t = \mu_t \). Let \(\varphi_t = \varphi^\mu : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) be the normalized solution of the Beltrami equation \(\overline{\partial} \varphi_t = \mu_t \overline{\partial} \varphi_t \) which fixes \(0, 1, \infty \).

It is easy to see that \(f_t = \varphi_t \circ f \circ \varphi_t^{-1} \) is a rational map of degree \(d \), and \(t \mapsto f_t \) is holomorphic, with \(f_0 = f \). The infinitesimal variation

\[w(z) = \frac{d}{dt} \bigg|_{t=0} f_t(z) \]

defines a holomorphic vector field whose value at \(z \) lies in the tangent space \(T_{f(z)} \hat{\mathbb{C}} \). In other words, \(w \) can be thought of as a holomorphic section of the pull-back bundle \(f^*(T\hat{\mathbb{C}}) \) which in turn can be identified with a tangent vector in \(T_{f} \text{Rat}_d \). This is the so-called infinitesimal deformation of \(f \) induced by \(\mu \). We say that \(\mu \) induces a trivial deformation if \(w = 0 \).

Another way of describing \(w \) is as follows: First consider the unique quasiconformal vector field solution to the \(\partial \overline{\partial} \)-equation \(\overline{\partial} v = \mu \) which vanishes at \(0, 1, \infty \). This is precisely the infinitesimal variation \(\frac{d}{dt} \bigg|_{t=0} \varphi_t(z) \) of the normalized solution of the Beltrami equation. It is not hard to check that \(w = \delta_f v \), where

\[\delta_f v(z) = v(f(z)) - f'(z)v(z) \]
measures the deviation of v from being f-invariant. Note in particular that $\delta_f v$ is holomorphic even though v is only quasiconformal, and that $w = \delta_f v$ depends linearly on μ, a fact that is not immediately clear from the first description of w. It follows that μ induces a trivial deformation if and only if v is f-invariant.

It is easy to see that the triviality condition $\delta_f v = 0$ forces v to vanish on the Julia set $J(f)$. In fact, let $z_0 \mapsto z_1 \mapsto \cdots \mapsto z_n = z_0$ be a repelling cycle of f with multiplier λ. Then the condition $\delta_f v = 0$ implies $v(z_{j+1}) = f'(z_j)v(z_j)$ for all $j = 0, \ldots, n-1$, so that

$$\prod_{j=0}^{n-1} v(z_j) = \lambda \cdot \prod_{j=0}^{n-1} v(z_j).$$

Since $|\lambda| > 1$, it follows that $v(z_j) = 0$ for some, hence for all j. Now $J(f)$ is the closure of such cycles and v is continuous, so $v(z) = 0$ for all $z \in J(f)$.

§4. The proof. The above construction gives well-defined linear maps

$$B(U) \stackrel{\lambda}{\rightarrow} B(\hat{\mathbb{C}}, f) \stackrel{D}{\rightarrow} T_f \text{Rat}_d$$

Here $B(U)$ is the space of L^∞ Beltrami differentials in U, $B(\hat{\mathbb{C}}, f)$ is the space of f-invariant L^∞ Beltrami differentials on $\hat{\mathbb{C}}$, and D is the linear operator $D\mu = w = \delta_f v$ constructed above.

Lemma. $B(U)$ contains an infinite-dimensional subspace $N(U)$ of compactly supported Beltrami differentials with the following property: If $\mu N(U)$ satisfies $\mu = \overline{\partial} v$ for some quasiconformal vector field v with $v|_{\partial U} = 0$, then $\mu = 0$.

Assuming this for a moment, let us see how this implies the theorem. Consider the above subspace $N(U)$ for a simply-connected wandering domain U and restrict the diagram (1) to this subspace. If $D(\mu) = 0$ for some $\mu \in N(U)$, or in other words if μ induces a trivial deformation, that means the normalized solution v to $\overline{\partial} v = \mu$ is f-invariant. Hence $v = 0$ on $J(f)$ and in particular on the boundary of U. By the property of $N(U)$, $\mu = 0$. This means that the infinite-dimensional subspace $N(U)$ injects into $T_f \text{Rat}_d$ whose dimension is $2d + 1$. The contradiction shows that no wandering domain can exist.

It remains to prove the Lemma. Let us first consider the corresponding problem for the unit disk \mathbb{D}. Let $\hat{N}(\mathbb{D}) \subset B(\mathbb{D})$ be the linear span of the Beltrami differentials $\mu_k(z) = z^{k+1} \frac{dz}{dz}$ for $k \geq 0$. The vector field

$$V_k(z) = \begin{cases}
\frac{1}{k+1} z^{k+1} \frac{\partial}{\partial z} & |z| < 1 \\
\frac{1}{k+1} z^{-(k+1)} \frac{\partial}{\partial z} & |z| \geq 1
\end{cases}$$

solves the equation $\overline{\partial} V_k = \mu_k$ on \mathbb{D}. Let $\mu = \overline{\partial} v \in \hat{N}(\mathbb{D})$ and $v|_{\partial \mathbb{D}} = 0$, and take the appropriate linear combination V of the V_k which solves $\overline{\partial} V = \mu$. Then $V - v$ is
holomorphic in \(\mathbb{D} \) and coincides with \(V \) on the boundary \(\partial \mathbb{D} \). This is impossible if \(V|_{\partial \mathbb{D}} \) has any negative power of \(z \) in it. Hence \(\mu = 0 \). To get the compact support condition, let \(N(\mathbb{D}) \subset B(U) \) consist of all Beltrami differentials which coincide with an element of \(\hat{N}(\mathbb{D}) \) on the disk \(|z| < 1/2 \) and are zero on \(1/2 \leq |z| < 1 \). If \(\mu = \overline{\partial} v \in N(\mathbb{D}) \) and \(v|_{\partial \mathbb{D}} = 0 \), then \(v \) has to be zero on the annulus \(1/2 < |z| < 1 \) since it is holomorphic there. In particular, it is zero on \(|z| = 1/2 \). Now the same argument applied to the disk \(|z| < 1/2 \) shows \(\mu = 0 \).

For the general case, consider a conformal isomorphism \(\psi : \mathbb{D} \to U \) with the inverse \(\phi = \psi^{-1} \) and define \(N(U) = \phi^*(N(\mathbb{D})) \). Let \(v = v(z) \frac{\partial}{\partial z} \) be a quasiconformal vector field such that \(\mu = \overline{\partial} v \in N(U) \) and \(v|_{\partial U} = 0 \). Then \(\phi^*(v) = v(\psi(z))/\psi'(z) \frac{\partial}{\partial z} \) is a vector field on \(\mathbb{D} \) which is holomorphic near the boundary \(\partial \mathbb{D} \) and \(v(\psi(z)) \to 0 \) as \(|z| \to 1 \). By the reflection principle, \(v(\psi(z)) \) is identically zero near the boundary of \(\mathbb{D} \). Since \(\psi^* \mu = \overline{\partial} \phi^*(v) \in N(\mathbb{D}) \), we must have \(\psi^* \mu = 0 \), which implies \(\mu = 0 \). \(\square \)

Remark. Sullivan’s original argument [Ann. of Math. 122 (1985) 401-418] had to deal with two essential difficulties: (i) the possibility of \(U \) being non simply-connected, perhaps of infinite topological type; (ii) the possible complications near the boundary of \(U \), for example when \(\partial U \) is not locally-connected. He addressed the former by using a direct limit argument, and the latter by using Carathéodory’s theory of “prime ends.” Both of these difficulties are surprisingly bypassed in the present proof.