Degree Spectra of Differentially Closed Fields

Russell Miller
Queens College & CUNY Graduate Center

Recursion Theory Seminar
University of California – Berkeley
14 April 2014

Joint work with Dave Marker.
Spectra of Countable Structures

Let S be a structure with domain ω, in a finite language.

Definition

The *Turing degree* of S is the join of the Turing degrees of the functions and relations on S. If these are all computable, then S is a *computable structure*.

Definition

The *spectrum* of S is the set of all Turing degrees of copies of S:

$$\text{Spec}(S) = \{ \deg(M) : M \cong S \& \text{dom}(M) = \omega \}.$$

So the spectrum measures the level of complexity intrinsic to the structure S.

Russell Miller (CUNY)
Facts About Spectra

Theorem (Knight 1986)

For all countable structures S but the automorphically trivial ones, the spectrum of S is upwards-closed under Turing reducibility.

Many interesting spectra can be built using graphs, including upper cones, α-th jump cones $\{d : d^{(\alpha)} \geq_T c\}$, and more exotic sets of Turing degrees. (Greenberg, Montalbán, and Slaman recently constructed a graph whose spectrum contains exactly the nonhyperarithmetic degrees.) Indeed, graphs are *complete*, in the following sense:

Theorem (Hirschfeldt-Khoussainov-Shore-Slinko 2002)

For every countable structure S in any finite language, there exists a countable graph G which has the same spectrum as S.
Spectra of Algebraically Closed Fields

\{\text{all Turing degrees}\}.
Differentially Closed Fields

A differential field is a field along with a differential operator \(\delta \) on the field elements, respecting addition \(\delta(x + y) = \delta x + \delta y \) and satisfying the product rule \(\delta(x \cdot y) = (x \cdot \delta y) + (y \cdot \delta x) \).

Such a field \(K \) is differentially closed if it also satisfies the Blum axioms: for all differential polynomials \(p, q \in K\{Y\} \),

\[
\text{ord}(q) < \text{ord}(p) \implies (\exists x \in K) [p(x) = 0 \land q(x) \neq 0],
\]

where the order \(r = \text{ord}(p) \) is the largest derivative \(\delta^r Y \) used in \(p \).

This theory \(\text{DCF}_0 \) is complete and decidable and has quantifier elimination. Moreover, it has computable models:

Theorem (Harrington, 1974)

For every computable differential field \(k \), there exists a computable model \(K \) of \(\text{DCF}_0 \) and a computable embedding \(g \) of \(k \) into \(K \) such that \(K \) is a differential closure of the image \(g(k) \).
Noncomputable Differentially Closed Fields

By analogy to ACF_0, one may guess that all countable models of DCF_0 have computable presentations. However, it is known that there exist 2^ω-many (non-isomorphic) countable models of DCF_0. Indeed:

Theorem (Marker-M.)

For every countable graph G, there exists a countable $K \models \text{DCF}_0$ with

$$\text{Spec}(K) = \{ d : d' \text{ can enumerate the edges in some } G^* \cong G \}.$$
Noncomputable Differentially Closed Fields

By analogy to \mathbb{ACF}_0, one may guess that all countable models of \mathbb{DCF}_0 have computable presentations. However, it is known that there exist 2^ω-many (non-isomorphic) countable models of \mathbb{DCF}_0. Indeed:

Theorem (Marker-M.)

For every countable graph G, there exists a countable $K \models \mathbb{DCF}_0$ with

$$\text{Spec}(K) = \{d : d' \text{ can enumerate the edges in some } G^* \cong G\}.$$

It is not difficult to show that, for every G, there is another graph H s.t.

$$\{d : d' \text{ enumerates the edges in some } G^* \cong G\} = \{d : d' \in \text{Spec}(H)\},$$

and that conversely, for each H, there is some such G. So the theorem proves that every countable graph H yields a $K \models \mathbb{DCF}_0$ with

$$\text{Spec}(K) = \{d : d' \in \text{Spec}(H)\}.$$
Coding a Graph G into $K \models DCF_0$

Start with a copy \hat{Q} of the differential closure of \mathbb{Q}. Let A be the following infinite set of indiscernibles in \hat{Q}:

$$A = \{a_0, a_1, \ldots\} = \{y \in \hat{Q} : \delta y = y^3 - y^2 \land y \neq 0 \land y \neq 1\}.$$

Each $a_m \in A$ will represent the node m from G.

Let $E_{am an}$ be the elliptic curve defined by the equation

$$y^2 = x(x - 1)(x - a_m - a_n).$$

The coordinates of all solutions to this curve in $(\hat{Q})^2$ are algebraic over $\mathbb{Q}\langle a_m + a_n \rangle$ and $E_{am an}$ forms an abelian group, with exactly j^2 j-torsion points for every j, and with no non-torsion points. There is a homomorphism of differential algebraic groups from $E_{am an}$ into a vector group, whose kernel $E_{am an}^\dagger$ is called the Manin kernel of $E_{am an}$.
Coding a Graph G into $K \models DCF_0$

For each $m < n$ with an edge in G from m to n, add a generic point of $E_{a_m + a_n}^\#$ to our differential field. The coordinates of this point will each be transcendental over $\mathbb{Q}\langle a_m + a_n \rangle$. Let K be the differential closure of the resulting differential field.

Thus the coding is:

$$G \text{ has an edge from } m \text{ to } n \iff (\exists (x, y) \in E_{a_m a_n}^\#) [x \text{ is transcendental over } \mathbb{Q}\langle a_m + a_n \rangle].$$

In particular, the points we added do not accidentally give rise to any transcendental solutions to any other $E_{a_m', a_n'}^\#$.

Russell Miller (CUNY)

Spectra of DCF_0

Recursion Theory Seminar
Spec\((K) = \{ d : d' \text{ enumerates some } G^* \cong G \}\)

Now if \(d\) is the degree of a copy \(K^* \cong K\), then with a \(d'\)-oracle, we enumerate the edges in some \(G^*\) as follows. Find all elements \(a_m^*\) of the set \(A^*\) of indiscernibles in \(K^*\), go through all solutions to \(E_{a_m^*a_n^*}\) for each \(m < n\), and ask whether each is transcendental over \(\mathbb{Q}\langle a_m^*, a_n^*\rangle\) and lies in \(E^\#_{a_m^*a_n^*}\). If we ever get an answer "YES," we enumerate \((m, n)\) into the edge relation of the graph \(G^*\). Thus \(G^* \cong G\): the isomorphism comes from restricting the isomorphism \(K^* \to K\) to \(A^* \to A\).

Conversely, if \(D \in d\) and \(D'\) enumerates the edges in some \(G^* \cong G\), we build \(K^* \cong K\) using a \(d\)-oracle. Start building \(\hat{\mathbb{Q}}^*\), finitely much at each step. At stage \(s\), if it appears (from \(D\)) that \(D'\) has enumerated an edge \((m, n)\) in \(G^*\), add a point \(x_{mn} \in E^\#_{a_m^*a_n^*}\) which is not (yet) algebraic over \(\mathbb{Q}\langle a_m, a_n\rangle\). If \(D'\) later changes and wipes out this enumeration, we can still make \(x_{mn}\) a \(t\)-torsion point for some large \(t\), hence algebraic. Finally, use Harrington’s theorem to build a \(D\)-computable differential closure \(K^*\) of the \(D\)-computable differential field defined here.
Low and Nonlow Degrees

For every $d' > 0'$, there exists a graph G such that d' enumerates a copy of G, but $0'$ does not. Therefore:

Corollary

For every nonlow degree d (i.e., with $d' > 0'$), there exists some $K \models \text{DCF}_0$ of degree d such that K is not computably presentable.

We now prove the converse:

Theorem (Marker-M.)

Every low model of DCF_0 is isomorphic to a computable one.

This recalls the famous theorem of Downey-Jockusch that every low Boolean algebra is isomorphic to a computable one.
Principal Types over k

Over a field E, the principal 1-types are generated by the formulas $p(X) = 0$, where $p \in E[X]$ is irreducible. Over a differential field k, this is not enough! Over \mathbb{Q}, the differential polynomial $(\delta Y - Y)$ is irreducible, but only the following formula generates a principal type:

$$\delta Y - Y = 0 \ \& \ \ Y \neq 0.$$

In general, we need pairs (p, q) from $k\{Y\}$, with $\text{ord}(p) > \text{ord}(q)$. If the formula $p(Y) = 0 \neq q(Y)$ generates a principal type, then (p, q) is a constrained pair, and p is constrainable. Every principal type is generated by a constrained pair, but not all irreducible $p(Y)$ are constrainable. $p(Y) = \delta Y$ is a simple counterexample.

Fact

$p \in k\{Y\}$ is constrainable \iff p is the minimal differential polynomial of some x in the differential closure K of k.

It is Π^k_1 for (p, q) to be constrained, and Σ^k_2 for p to be constrainable.
Low Differentially Closed Fields K

If K is low, then the (computable infinitary) Π^0_1-theory of K has degree $0'$, hence is computably approximable. This allows us to “guess” effectively at the minimal differential polynomial of any $x \in K$ over the differential subfield $\mathbb{Q}\langle x_{i_0}, \ldots, x_{i_n} \rangle \subseteq K$ generated by an arbitrary finite tuple from K.

Writing $K = \{x_0, x_1, \ldots\}$ and guessing thus, we build a computable differential field $F = \{y_0, y_1, \ldots\}$ and finite partial maps $h_s : K \rightarrow F$ such that:

- $(\forall n) \lim_s h_s(x_n)$ exists; and
- $(\forall m) \lim_s h_s^{-1}(y_m)$ exists; and
- $\forall s$ h_s is a partial isomorphism, based on the approximations in K to the minimal differential polynomials of its domain elements.

Thus $h = \lim_s h_s$ will be an isomorphism from K onto F.

Russell Miller (CUNY)
Spectra of DCF0
Recursion Theory Seminar 12 / 15
Differences from Boolean Algebras

The Downey-Jockusch Theorem has been extended.

Theorem (Downey-Jockusch; Thurber; Knight-Stob)

Every low$_4$ Boolean algebra is isomorphic to a computable one.

In contrast, the first Marker-M theorem established that every nonlow Turing degree computes some $K \models \text{DCF}_0$ with $0 \notin \text{Spec}(K)$.

Fact

There exists a low Boolean algebra which is not $0'$-computably isomorphic to any computable Boolean algebra. (Downey-Jockusch always gives a $0''$-computable isomorphism.)

But the theorem for low differentially closed fields built a Δ_2 isomorphism onto the computable copy.
Relativizing the Result

Relativizing the previous theorem yields:

Corollary

For every $K \models \text{DCF}_0$, $\text{Spec}(K)$ respects the equivalence relation $c \sim_1 d$ defined by $c' = d'$.

Proof: If $c \in \text{Spec}(K)$ and $d' = c'$, then d can guess effectively at the minimal differential polynomials in the c-computable copy of K, and the process in the theorem builds a d-computable copy of K.

Corollary (cf. Andrews, Montalbán, unpublished, using Richter)

For every $K \models \text{DCF}_0$, $\text{Spec}(K)$ cannot be contained within any upper cone of Turing degrees, except the cone above 0.

Proof: no other upper cone respects \sim_1.

Russell Miller (CUNY) Spectra of DCF_0 Recursion Theory Seminar 14 / 15
Why Is This a Converse?

Corollary (Marker-M.)

For a set S of Turing degrees, TFAE:

1. S is the spectrum of some $K \models \text{DCF}_0$.
2. S is the spectrum of some ANT graph and S respects \sim_1.
3. S is the preimage under jump of the spectrum of some ANT graph.

(ANT: automorphically non-trivial.)

$(1 \implies 2)$ was the relativized version of the second theorem (plus the HKSS theorem), and $(3 \implies 1)$ was the first theorem. For $(2 \implies 3)$, if $S = \text{Spec}(G)$, let H be the jump of the structure G (defined in work of Montalbán and Soskov-Soskova). By HKSS, we may take H to be a graph. Then $\text{Spec}(H) = \{c' : c \in \text{Spec}(G)\}$, and so

$$\text{Spec}(G) \subseteq \{d : d' \in \text{Spec}(H)\}.$$

For \supseteq, if $d' \in \text{Spec}(H)$, then $d' = c'$ for some $c \in \text{Spec}(G)$, and $d \in \text{Spec}(G)$ since $\text{Spec}(G) = S$ respects \sim_1.

Russell Miller (CUNY)
Spectra of DCF$_0$
Recursion Theory Seminar