Local Computability and Uncountable Structures

Russell Miller,
Queens College &
Graduate Center – CUNY

September 29, 2008

Connecticut Logic Seminar
Local Descriptions of Structures

Defn.: A simple cover \mathcal{A} of a structure \mathcal{S} is a set $
\{\mathcal{A}_i : i \in I\}$ which contains the finitely generated substructures of \mathcal{S}, up to isomorphism.

\mathcal{A} is computable if every $\mathcal{A} \in \mathcal{A}$ is.

\mathcal{A} is uniformly computable if there is a single algorithm listing out all \mathcal{A}_i in \mathcal{A}. In this case \mathcal{S} is locally computable.

Examples:

- All fields, and all relational structures, have computable simple covers.

- The ordered field $(\mathbb{R}, <)$ does not.

- The ordered field of computable real numbers is not locally computable, but has a computable simple cover.
Let \mathcal{S} be locally computable via $\{\mathcal{A}_0, \mathcal{A}_1, \ldots\}$. Suppose $\mathcal{B} \subseteq \mathcal{C} \subseteq \mathcal{S}$ are finitely generated. If

\[\begin{array}{ccc}
\mathcal{B} & \subseteq & \mathcal{C} \\
\beta \cong & & \gamma \cong \\
\mathcal{A}_i & \mapsto & \mathcal{A}_j
\end{array} \]

commutes, we say that $f : \mathcal{A}_i \hookrightarrow \mathcal{A}_j$ lifts to the inclusion $\mathcal{B} \subseteq \mathcal{C}$ via the isomorphisms β and γ.

Defn. A cover of \mathcal{S} also has sets $I_{ij}^\mathcal{A}$ of embeddings $\mathcal{A}_i \hookrightarrow \mathcal{A}_j$, such that every inclusion in \mathcal{S} is the lift of some f in some $I_{ij}^\mathcal{A}$, and every $f \in I_{ij}^\mathcal{A}$ lifts to an inclusion in \mathcal{S}.

The cover is *uniformly computable* if all $I_{ij}^\mathcal{A}$ are c.e. uniformly in i and j.

Notice that f is determined by its values on the generators of \mathcal{A}_i.
Examples

- Every infinite linear order has the same uniformly computable cover: \mathcal{A}_i is the linear order on i elements, and I_{ij} contains all embeddings $\mathcal{A}_i \hookrightarrow \mathcal{A}_j$.

- In \mathbb{C}, the cover contains every f.g. field of characteristic 0, and every possible embedding $f : \mathcal{A}_i \hookrightarrow \mathcal{A}_j$ lifts to an inclusion. Similarly for any ACF, given its transcendence degree.

- \mathbb{R} also has a uniformly computable cover. This follows from:

 Lemma: S has a uniformly computable cover iff S has a uniformly computable simple cover.

 Proof: Given a simple cover $\{\mathcal{A}_i\}$, consider the cover containing all f.g. substructures of each \mathcal{A}_i, with inclusion maps from these substructures into the original \mathcal{A}_i.

4
1-Extensionality

Defn.: Every embedding from any A_i into S is 0-extensional. An isomorphism $\beta : A_i \hookrightarrow B \subseteq S$ is 1-extensional if

- $(\forall j)(\forall f \in I^2_{i,j})(\exists C \subseteq S)[f \text{ lifts to } B \subseteq C \text{ via } \beta \text{ and some isomorphism } \gamma]$; and
- $(\forall \text{ f.g. } C \supseteq B)(\exists j)(\exists f \in I^2_{i,j})[f \text{ lifts to } B \subseteq C \text{ via } \beta \text{ and some isomorphism } \gamma]$.

Intuition: A 1-extensional β is a strong pairing between A_i and B, in that \mathcal{A}’s ways to extend A_i are exactly the ways of extending B within S.

\mathcal{A} is a 1-extensional cover if every $A_i \in \mathcal{A}$ is the domain of a 1-extensional embedding and every f.g. $B \subseteq S$ is the range of one.
Example

Cantor Space: The linear order on \(2^\omega\) has a 1-extensional cover. The objects are all finite linear orders \(a_0 \prec \cdots \prec a_n\) under the following specifications. \(a_0\) may or may not be designated as the left end point; likewise \(a_n\) as the right end point. Each \(a_m\) not so designated may be called either a left gap point or a right gap point (but not both). If \(a_m\) is a LGP and \(a_{m+1}\) a RGP, then we must specify whether they belong to the same gap or not.

An embedding \(f : \mathcal{A}_i \hookrightarrow \mathcal{A}_j\) belongs to \(I_{i,j}^{\mathcal{A}}\) if it respects all these properties: \(a_m\) is a left end point iff \(f(a_m)\) is, etc.

So, if \(a_m\) and \(a_{m+1}\) are LGP and RGP for the same gap, then there can be no element between \(f(a_m)\) and \(f(a_{m+1})\) in \(\mathcal{A}_j\).
\textbf{θ-Extensionality}

Defn.: Let θ be an ordinal. An isomorphism
\(\beta : A_i \hookrightarrow B \subseteq S \) is θ-extensional if

- \((\forall \text{ f.g. } C \supseteq B)(\forall \zeta < \theta)(\exists j)(\exists f \in I_{i,j}^A) \]
 \[f \text{ lifts to } B \subseteq C \text{ via } \beta \text{ and a } \zeta\text{-extensional } \gamma].

- and \((\forall j)(\forall f \in I_{i,j}^A)(\forall \zeta < \theta)(\exists C \subseteq S) \]
 \[f \text{ lifts to } B \subseteq C \text{ via } \beta \text{ and a } \zeta\text{-extensional } \gamma];

Intuition: A θ-extensional \(\beta \) is a strong pairing
between \(A_i \) and \(B \), in that \(\mathcal{A} \)'s ways to extend \(A_i \)
are exactly the ways of extending \(B \) within \(S \)
while preserving the \(\Sigma_\zeta \)-theory over \(B \).

\(\mathcal{A} \) is a \textit{θ-extensional cover} if every \(A_i \in \mathcal{A} \) is the
domain of an θ-extensional embedding and every
f.g. \(B \subseteq S \) is the range of one.
Lemma: \mathbb{R} has no 1-extensional cover.
Proof: If \mathcal{A} were such a cover, fix a noncomputable $x \in \mathbb{R}$ and a 1-extensional $\beta : A_i \hookrightarrow Q(x) \subseteq \mathbb{R}$. Then for $q \in \mathbb{Q}$:

\[q < x \iff \exists y \in \mathbb{R} \; y^2 = x - q \]

\[\iff \exists j \; \exists f \in I_{ij}^x \; \exists a \in A_j \]
\[[a^2 = f(\beta^{-1}(x)) - f(\beta^{-1}(q))] \]

So the lower cut defined by x would be computably enumerable, and similarly for the upper cut.
Theorem (Miller): Suppose S has a θ-extensional cover. Then $(\forall \zeta \leq \theta)$, and for any finite set \vec{p} of parameters in S, the Σ_ζ-theory of (S, \vec{p}) is arithmetically Σ^0_ζ, uniformly in i and $\alpha^{-1}(\vec{p})$, where $\alpha : A_i \hookrightarrow \langle \vec{p} \rangle$ is θ-extensional.

Moreover, this applies even to infinitary computable Σ_ζ formulas over P.

Σ_θ-Theory of S
Now we want to be able to extend our diagrams infinitely far to the right.

Defn.: A set M of embeddings $\beta : A_i \hookrightarrow S$ is a **correspondence system** if:

1. $(\forall i)(\exists \beta \in M) A_i = \text{dom}(\beta)$; and
2. $(\forall f.g. B \subseteq S)(\exists \beta \in M) B = \text{range}(\beta)$; and

and for all maps $\beta : A_i \cong B$ in M:

1. $(\forall j \forall f \in I_{i,j}^{\text{cf}})(\exists C \supseteq B)[f \text{ lifts to the inclusion } B \subseteq C \text{ via } \beta \text{ and some } \gamma \in M]$; and
2. $(\forall f.g. C \supseteq B)(\exists j \exists f \in I_{i,j}^{\text{cf}})[f \text{ lifts to the inclusion } B \subseteq C \text{ via } \beta \text{ and some } \gamma \in M]$.

Defn.: A structure is **∞-extensionally locally computable** if it has a correspondence system over a uniformly computable cover.
Perfect Local Computability

M is perfect if, for all $\beta, \gamma \in M$ with $\text{range}(\beta) = \text{range}(\gamma)$, we have $(\gamma^{-1} \circ \beta) \in I^{\kappa}_{ij}$, where $A_i = \text{dom}(\beta)$ and $A_j = \text{dom}(\gamma)$.

- The uniformly computable cover we built for C has a perfect correspondence system.
- The uniformly computable cover we built for Cantor space (as a linear order) is perfect.
- It is also possible to view Cantor space as the top level of the tree $2^{<\omega+1}$, as a partial order, and to build a perfect correspondence system for this structure.

Such structures are called perfectly locally computable.
Globally Computable Structures

Theorem (Miller): For a countable structure S, TFAE:

1. S is computably presentable;
2. S is perfectly locally computable;
3. S has a uniformly computable cover with a correspondence system, satisfying AP.

Proof: For (1 \implies 2), build the *natural cover* \mathcal{A} containing all f.g. substructures of S, under inclusion.

For (2 \implies 3), all perfect covers have AP.

For (3 \implies 1), amalgamate the \mathcal{A}_i together over all embeddings in \mathcal{A}, to get a computable presentation of S.
\(\infty\)-Extensionality

(joint work with Dustin Mulcahey)

Lemma: Let structures \(\mathcal{C}\) and \(\mathcal{S}\) have correspondence systems over the same cover. Suppose that \(\mathcal{C}\) is countable, and that \(P\) is a countable subset of \(\mathcal{S}\). Then there exists an elementary embedding of \(\mathcal{C}\) into \(\mathcal{S}\) whose image contains \(P\).

Corollary: Any two countable structures with correspondence systems over the same cover are isomorphic.
Simulations

Defn.: A *simulation* \mathcal{C} of a structure \mathcal{S} is an elementary substructure of \mathcal{S} which realizes the same n-types as \mathcal{S} (for all n).

If for every $\vec{a} \in \mathcal{C}$ there is $\vec{p} \in \mathcal{S}$ such that \mathcal{C} and \mathcal{S} realize the same n-types over \vec{a} and \vec{p}, and likewise for every \vec{p} there is an \vec{a}, then \mathcal{C} simulates \mathcal{S} *over parameters*.

Examples: The algebraic closure of the field $\mathbb{Q}(X_0, X_1, \ldots)$ is a computably presentable simulation of \mathbb{C} over parameters.

The intersection of \mathbb{Q} with Cantor space ($\subset [0, 1]$, as linear order) is a computably presentable simulation of Cantor space over parameters.
Building Simulations

Lemma: Every ∞-extensionally locally computable structure S has a countable simulation C over parameters with a correspondence system over the cover of S.

Proof: For each i, enumerate *one* image $\alpha(A_i)$ into C, with α in the correspondence system M for S. Then close C under the $\forall\exists$ conditions for a correspondence system.

Notice that if M is perfect for S, then the new system is perfect for C.
Computable Simulations

Thm. (Mulcahey-Miller): Every perfectly locally computable structure \mathcal{S} has a computably presentable simulation \mathcal{C} over parameters.

Moreover, if we fix a computable $\mathcal{D} \cong \mathcal{C}$, then for any countable parameter set $P \subseteq \mathcal{S}$, there exists an embedding $f_P : \mathcal{D} \hookrightarrow \mathcal{S}$ such that $P \subseteq \text{range}(f_P)$ and \mathcal{S} and $f_P(\mathcal{D})$ realize exactly the same finitary types over every finite subset of the image of f_P. (We call f_P an *elementary embedding over parameters*.)
Computable Simulations

Thm. A structure S has an ∞-extensional cover with $AP \iff S$ has a computable simulation C over parameters, such that, for all elementary embeddings $f : C \hookrightarrow S$ over parameters, all $\vec{a} \in C$, and all $x \in S$, there exists an elementary embedding $g : C \hookrightarrow S$ over parameters with $g|\vec{a} = f|\vec{a}$ and $x \in \text{range}(g)$.

The cover A is the natural cover of C. The correspondence system contains all restrictions (to elements of A) of elementary embeddings of C into S over parameters.
C and its Simulations

A computable simulation of the field \mathbb{C} must have infinite transcendence degree and be algebraically closed. Hence it must be the field $F = \mathbb{Q}(X_0, X_1, \ldots)$. However,

Fact: The natural cover of F is *not* a perfect cover of \mathbb{C}. This follows from:

Lemma: A perfect cover of \mathbb{C} must include a set $I_{ij}^\mathfrak{a}$ of size > 1.

Still, the natural cover \mathfrak{A} of F is an ∞-extensional cover of \mathbb{C}, and has AP. The correspondence system consists of all embeddings of every $A_i \in \mathfrak{A}$ into \mathbb{C}.

18
Cardinalities

Fix any countable sequence $\kappa_0 < \kappa_1 < \cdots$ of cardinals. Let T be the tree of height ω with each node at level n having κ_n-many immediate successors.

This T is perfectly locally computable: \mathcal{A} contains all finite substructures of $\omega^{<\omega}$, under embeddings which preserve levels, and M contains all level-preserving embeddings $\mathcal{A}_i \hookrightarrow T$.

But we can make the κ-sequence arbitrarily complex!
Local Constructivizability

Defn. (Ershov): A structure S is *locally constructivizable* if, for all finite tuples $\vec{p} \in S$, the \exists-theory of (S, \vec{p}) is arithmetically Σ_1^0.

Cor.: Every 1-extensional structure is locally constructivizable.

Local constructivizability may be seen as a non-uniform version of 1-extensional local computability.

The field \mathbb{R} is locally computable, but not locally constructivizable.

The field of computable real numbers is locally constructivizable, and locally computable, but not 1-extensional. (The *ordered* field of computable real numbers is not even locally computable.)
Questions

1. Can there exist a structure S with a computable simulation (over parameters?) such that S is not perfectly locally computable? Or such that S is not ∞-extensional with AP?

2. Develop a reasonable theory of maps (and computable maps) among covers.
 - Functors?

3. How locally computable is the structure $(\mathbb{C}, +, \cdot, 0, 1, f)$, where $f(z) = e^z$? (Similar questions for other holomorphic functions.)

4. Find θ-extensionally locally computable structures which are not $(\theta + 1)$-extensional, and which have arbitrarily complex $\Sigma_{\theta+1}$-theory over parameters.