Difficulty of Factoring Polynomials and Finding Roots

Russell Miller,
Queens College &
Graduate Center – CUNY

September 12, 2008
CUNY Logic Workshop
Defn.: The *splitting set* of a computable field F is

$$S_F = \{ p(X) \in F[X] : \exists q_0, q_1 \in F[X](q_0 \cdot q_1 = p) \}.$$

The *root set* of F is

$$R_F = \{ p(X) \in F[X] : \exists a \in F(p(a) = 0) \}.$$

F has a *splitting algorithm* if S_F is computable, and a *root algorithm* if R_F is computable.

Bigger questions: find the irreducible factors of $p(X)$, and find all its roots in F.

Fact: $R_F \leq_T S_F$ for every computable field F.
Rabin’s Theorem

Defn.: A homomorphism $g : F \to E$ of computable fields is a *Rabin embedding* if g is computable and E is algebraically closed and algebraic over the image $g(F)$.

Intuition: E is an effective algebraic closure of F.

Rabin’s Theorem:
1. Every computable field F is the domain of some Rabin embedding g into some E.
2. F has a splitting algorithm iff that Rabin embedding has image $g(F)$ computable within E.
Relativizing Rabin

Corollary: For a computable F, the following are Turing-equivalent:

- the image $g(F)$ within E, for any Rabin embedding $g : F \rightarrow E$;
- the splitting set S_F;
- the root set R_F;
- the *root function* for F, which tells how many roots each $p(X) \in F[X]$ has in F.

Other Reduction Procedures

Defn.: A is \(m \)-reducible to \(B \), \(A \leq_m B \), if there exists a total computable function \(h \) such that

\[
x \in A \iff h(x) \in B.
\]

\(A \) is \(1 \)-reducible to \(B \), \(A \leq_1 B \), if this \(h \) may be taken to be 1-to-1.

Jump Theorem: \(A \leq_T B \) iff \(A' \leq_1 B' \).

\(m \)-reducibility is strictly stronger than Turing reducibility – so how do \(R_F \) and \(S_F \) compare under \(\leq_m \)?
Positive Result

Thm.: For any computable field F with a computable transcendence basis, $S_F \leq_1 R_F$. In particular, this holds for any algebraic field F.

Problem: Given a polynomial $p(X) \in F[X]$, compute another polynomial $q(X) \in F[X]$ such that

$$p(X) \text{ splits } \iff q(X) \text{ has a root.}$$
Let P be the c.e. subfield of F generated by its transcendence basis (so F is algebraic over P). Let F_s be the subfield $P[0, \ldots, s - 1]$. Kronecker showed that every such F_s has a splitting algorithm.

Procedure: For a given $p(X)$, find an s with $p \in F_s[X]$. Check first whether p splits there. If so, pick its $q(X)$ to be a linear polynomial. If not, find the splitting field K_s of $p(X)$ over F_s, and the roots r_1, \ldots, r_d of $p(X)$ in K_s.

$S_F \leq_m R_F$
Theorems about Fields

Prop.: For $F_s \subseteq L \subseteq K_s$, $p(X)$ splits in $L[X]$ iff there exists $\emptyset \subsetneq I \subsetneq \{r_1, \ldots, r_d\}$ such that L contains all elementary symmetric polynomials in I.

Theorem of the Primitive Element: Every finite algebraic field extension is generated by a single element.

And we can effectively find a primitive generator x_I for each intermediate field L_I generated by the elementary symmetric polynomials in I. Let $q(X)$ be the product of the minimal polynomials $q_I(X) \in F_s[X]$ of each x_I.

This works!

⇒: If $p(X)$ splits in $F[X]$, then F contains some L_I. But then $x_I \in F$, and $q_I(x_I) = 0$.

⇐: If $q(X)$ has a root $x \in F$, then some $q_I(x) = 0$, so x is F_s-conjugate to some x_I. Then some $\sigma \in \text{Gal}(K_s/F_s)$ maps x_I to x. But σ permutes the set $\{r_1, \ldots, r_d\}$, so x generates the subfield containing all elementary symmetric polynomials in $\sigma(I)$. Then F contains this subfield, so $p(X)$ splits in $F[X]$.
Reverse Reduction

Thm.: There exists an algebraic computable field F such that $R_F \not\leq_m S_F$.

Strategy to show that a single φ_e is not an m-reduction from R_F to S_F: name a witness polynomial $q_e(X) = X^5 - X - 1$, say, whose Galois group over \mathbb{Q} is S_5, and start with $F_0 = \mathbb{Q}$. If $\varphi_e(q_e) \downarrow$ to some polynomial $p_e(X) \in F_0[X]$, then either keep $F = F_0$ (if p_e is reducible there), or add a root of q_e to F_0 (if $\deg(p_e) < 2$), or ...
Let L be the splitting field of $p_e(X)$ over F_0, containing all roots x_1, \ldots, x_n of p_e. If $F_0[x_1]$ contains no r_i, then let $F = F_0[x_1]$. Else say (WLOG) $r_1 = h(x_1)$ for some $h(X) \in F_0[X]$. Then each $h(x_j) \in \{r_1, \ldots, r_d\}$, and each r_i is $h(x_j)$ for some j. Let F be the fixed field of G_{12}:

$$\{\sigma \in \text{Gal}(L/F_0) : \{\sigma(r_1), \sigma(r_2)\} = \{r_1, r_2\}\}.$$

Then each $\sigma \in G_{12}$ fixes $I = \{x_j : h(x_j) \in \{r_1, r_2\}\}$ setwise. So F contains all polynomials symmetric in I, and $p_e(X)$ splits in F.

But there is a $\tau \in G_{12}$ which fixes no r_i. So $q_e(X)$ has no root in F.

Defeating one φ_e
Defeating all φ_e

Use distinct witness polynomials $q_e(X)$ against each φ_e.

Problem: We have to wait to see whether $\varphi_e(q_e)$ ever converges. While we wait, we must keep all roots of q_e out of F.

Solution: An injury-priority argument. When $\varphi_e(q_e) \downarrow$, our procedure may injure any strategy for defeating φ_i ($i > e$), but must not do anything to upset our procedure against any φ_j ($j < e$).

Lemma (Keating): We may choose q_e with degree prime to all $\deg(q_j)$ ($j < e$), and with symmetric Galois group over F_s.

So adding roots of q_e to F will not adjoin any roots of any q_j ($j < e$).
Avoiding Injury

Problem: We choose \(q_e(X) \), and then \(\varphi_e \) chooses \(p_e(X) \). So we can control the \(r_i \), but not the \(x_j \). Putting an \(x_j \) into \(F \) to defeat one \(\varphi_e \) may ruin our strategy against another \(\varphi_{e'} \).

Solution: If \(F_s[r_1] \) contains no symmetric subfield \(L_I \subset L \), then adjoin \(r_1 \) to \(F \). If some \(L_I \) satisfies \(L_I \nsubseteq F_s[r_1] \), adjoin \(L_I \) to \(F \).

Lemma: Otherwise, at least one subgroup \(G_{12}, G_{13}, \) or \(G_{23} \) contains some symmetric subfield \(L_I \). Extend \(F \) to be the fixed field of that subgroup.