Computability Theory at Work: Factoring Polynomials and Finding Roots

Russell Miller

Queens College & CUNY Graduate Center
New York, NY

MAA MathFest
Portland, OR
7 August 2014
Basic Question for Today

Let F be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does $p(X)$ factor (nontrivially) in $F[X]$?
- Does $p(X)$ have a root in F? (That is, does F contain a solution to $p(X) = 0$?)
Basic Question for Today

Let F be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does $p(X)$ factor (nontrivially) in $F[X]$?
- Does $p(X)$ have a root in F? (That is, does F contain a solution to $p(X) = 0$?)

Question

Which of these two problems is more difficult?
Basic Question for Today

Let F be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does $p(X)$ factor (nontrivially) in $F[X]$?
- Does $p(X)$ have a root in F? (That is, does F contain a solution to $p(X) = 0$?)

Question

Which of these two problems is more difficult?

For $p(X)$ of degree ≥ 2, having a root implies having a factorization. So, finding a root seems harder than finding a factorization.
Basic Question for Today

Let F be any field, and let $p \in F[X]$ be an arbitrary polynomial. Two problems immediately arise:

- Does $p(X)$ factor (nontrivially) in $F[X]$?
- Does $p(X)$ have a root in F? (That is, does F contain a solution to $p(X) = 0$?)

Question

Which of these two problems is more difficult?

For $p(X)$ of degree ≥ 2, having a root implies having a factorization. So, finding a root seems harder than finding a factorization.

But the negative answer is the hard one to prove! And if $p(X)$ has no factorization, then it has no root – so maybe the harder problem is the one about factorization?
Turing-Computable Fields

Defn.
A function \(\varphi : \mathbb{N} \rightarrow \mathbb{N} \) is \textit{computable} if there is a finite program (\(\equiv \) Turing machine) which computes it. (We allow \(\varphi \) to be a \textit{partial function}, i.e. with domain \(\subseteq \mathbb{N} \).)

A subset of \(\mathbb{N} \) is computable if its characteristic function is.

Defn.
A \textit{computable field} \(F \) is a (finite or countable) field whose elements are \(\{ x_0, x_1, x_2, \ldots \} \), in which the field operations \(+ \) and \(\cdot \) are given by computable functions \(f \) and \(g \):

\[
x_i + x_j = x_{f(i,j)} \quad x_i \cdot x_j = x_{g(i,j)}
\]
Turing-Computable Fields

Defn.

A function \(\varphi : \mathbb{N} \to \mathbb{N} \) is *computable* if there is a finite program (≡ Turing machine) which computes it. (We allow \(\varphi \) to be a *partial function*, i.e. with domain \(\subseteq \mathbb{N} \).) A subset of \(\mathbb{N} \) is computable if its characteristic function is.

Defn.

A *computable field* \(F \) is a (finite or countable) field whose elements are \(\{ x_0, x_1, x_2, \ldots \} \), in which the field operations \(+ \) and \(\cdot \) are given by computable functions \(f \) and \(g \):

\[
 x_i + x_j = x_{f(i,j)} \quad x_i \cdot x_j = x_{g(i,j)}
\]

The following fields are all isomorphic to computable fields:

\[
 \mathbb{Q}, \mathbb{F}_p, \mathbb{Q}(X_1, X_2, \ldots), \mathbb{F}_p(X_1, X_2, \ldots), \overline{\mathbb{Q}}, \overline{\mathbb{F}_p}
\]

and all finitely generated extensions of these.
Background in Computability

Useful Facts

- There is a noncomputable set K which is\textit{computably enumerable} (\equiv the image of a computable function with domain \mathbb{N}). The \textit{Halting Problem} is one example.
- There exists a \textit{universal Turing machine} $\psi : \mathbb{N}^2 \rightarrow \mathbb{N}$ such that every partial computable φ is given by $\psi(e, \cdot)$ for some e.
- There is a computable bijection from \mathbb{N} onto $\mathbb{N}^* = \bigcup_k \mathbb{N}^k$.

Interesting Fields

1. There is a computable field F_K isomorphic to $\mathbb{Q}[\sqrt{p_n} \mid n \in K]$. (Recall: K is c.e. but not computable; p_0, p_1, \ldots are the primes.) In F_K, factoring and having roots are not computable, since

$$n \in K \iff (X^2 - p_n) \text{ has a root} \iff (X^2 - p_n) \text{ factors}.$$

2. The field $\mathbb{Q}[\sqrt{p_n} \mid n \notin K]$ is not isomorphic to any computable field.

Russell Miller (CUNY)
The Root Set and the Splitting Set

Since we can enumerate all elements of a computable field F, we can also enumerate all polynomials over F:

$$F[X] = \{ f_0(X), f_1(X), f_2(X), \ldots \}.$$

Defn.

The *splitting set* S_F and the *root set* R_F of a computable field F are:

$$S_F = \{ n \in \mathbb{N} : (\exists \text{ nonconstant } g, h \in F[X]) \ g(X) \cdot h(X) = f_n(X) \}$$

$$R_F = \{ n \in \mathbb{N} : (\exists a \in F) \ f_n(a) = 0 \}.$$

F has a *splitting algorithm* if S_F is computable, and a *root algorithm* if R_F is computable.
The Root Set and the Splitting Set

Since we can enumerate all elements of a computable field F, we can also enumerate all polynomials over F:

$$F[X] = \{f_0(X), f_1(X), f_2(X), \ldots\}.$$

Defn.

The *splitting set* S_F and the *root set* R_F of a computable field F are:

$$S_F = \{n \in \mathbb{N} : (\exists \text{ nonconstant } g, h \in F[X]) \ g(X) \cdot h(X) = f_n(X)\}$$

$$R_F = \{n \in \mathbb{N} : (\exists a \in F) \ f_n(a) = 0\}.$$

F has a *splitting algorithm* if S_F is computable, and a *root algorithm* if R_F is computable.

Bigger questions: find the irreducible factors of $p(X)$, and find all its roots in F. These questions reduce to the splitting set and the root set.
Splitting Algorithms

Theorem (Kronecker, 1882)

- The field \mathbb{Q} has a splitting algorithm: it is decidable which polynomials in $\mathbb{Q}[X]$ have factorizations in $\mathbb{Q}[X]$.
- Let F be a computable field of characteristic 0 with a splitting algorithm. Every primitive extension $F(x)$ of F also has a splitting algorithm, which may be found uniformly in the minimal polynomial of x over F (or uniformly knowing that x is transcendental over F).

Recall that for $x \in E$ algebraic over F, the minimal polynomial of x over F is the unique monic irreducible $f(X) \in F[X]$ with $f(x) = 0$.
Splitting Algorithms

Theorem (Kronecker, 1882)

- The field \(\mathbb{Q} \) has a splitting algorithm: it is decidable which polynomials in \(\mathbb{Q}[X] \) have factorizations in \(\mathbb{Q}[X] \).
- Let \(F \) be a computable field of characteristic 0 with a splitting algorithm. Every primitive extension \(F(x) \) of \(F \) also has a splitting algorithm, which may be found uniformly in the minimal polynomial of \(x \) over \(F \) (or uniformly knowing that \(x \) is transcendental over \(F \)).

Recall that for \(x \in E \) algebraic over \(F \), the minimal polynomial of \(x \) over \(F \) is the unique monic irreducible \(f(X) \in F[X] \) with \(f(x) = 0 \).

Corollary

For any algebraic computable field \(F \), every finitely generated subfield \(\mathbb{Q}(x_1, \ldots, x_n) \) or \(\mathbb{F}_p(x_1, \ldots, x_n) \) has a splitting algorithm, uniformly in the tuple \(\langle x_1, \ldots, x_d \rangle \).
Comparing S_F and R_F

For all computable fields F, S_F and R_F are computably enumerable, but may not be computable. With an oracle for S_F, we can find all irreducible factors of any given polynomial $p \in F[X]$:

1. Use S_F to determine whether p is irreducible in $F[X]$.
2. If not, search through $F[X]$ for some nontrivial factorization of p, and return to Step 1 for each factor.

Therefore, R_F is decidable if one has access to an S_F-oracle. (In particular, if S_F is computable, so is R_F.) We say that R_F is Turing-reducible to S_F, written $R_F \leq_T S_F$.
Comparing S_F and R_F

For all computable fields F, S_F and R_F are computably enumerable, but may not be computable. With an oracle for S_F, we can find all irreducible factors of any given polynomial $p \in F[X]$:

1. Use S_F to determine whether p is irreducible in $F[X]$.
2. If not, search through $F[X]$ for some nontrivial factorization of p, and return to Step 1 for each factor.

Therefore, R_F is decidable if one has access to an S_F-oracle. (In particular, if S_F is computable, so is R_F.) We say that R_F is Turing-reducible to S_F, written $R_F \leq_T S_F$.

But can we compute S_F from an R_F-oracle?
Theorem (Rabin 1960; Frohlich & Shepherdson 1956)

For every computable field F, $S_F \subseteq_T R_F$.

$S_F \equiv_T R_F$
Theorem (Rabin 1960; Frohlich & Shepherdson 1956)

For every computable field F, $S_F \leq_T R_F$.

The first proof, by Frohlich & Shepherdson, uses symmetric polynomials. The more elegant proof, by Rabin, embeds F as a subfield $g(F)$ in a computable presentation of its algebraic closure \overline{F}. (Rabin’s Theorem also shows that $g(F) \equiv_T S_F$, with $g(F)$ viewed as a subset of \overline{F}.)
Comparing R_F and S_F

We know that $R_F \equiv_T S_F$. Is there any way to distinguish the complexity of these sets?
Comparing R_F and S_F

We know that $R_F \equiv_T S_F$. Is there any way to distinguish the complexity of these sets?

Defn.

For sets $A, B \subseteq \mathbb{N}$, we say that A is m-reducible to B, written $A \leq_m B$, if there is a computable function f such that:

$$(\forall x)[x \in A \iff f(x) \in B].$$
Comparing R_F and S_F

We know that $R_F \equiv_T S_F$. Is there any way to distinguish the complexity of these sets?

Defn.

For sets $A, B \subseteq \mathbb{N}$, we say that A is *m-reducible to B*, written $A \leq_m B$, if there is a computable function f such that:

$$(\forall x)[x \in A \iff f(x) \in B].$$

Theorem (M, 2010)

For all algebraic computable fields F, $S_F \leq_m R_F$. However, there exists such a field F with $R_F \not\leq_m S_F$.
Comparing R_F and S_F

We know that $R_F \equiv_T S_F$. Is there any way to distinguish the complexity of these sets?

Defn.

For sets $A, B \subseteq \mathbb{N}$, we say that A is \textit{m-reducible to} B, written $A \leq_m B$, if there is a computable function f such that:

$$(\forall x)[x \in A \iff f(x) \in B].$$

Theorem (M, 2010)

For all algebraic computable fields F, $S_F \leq_m R_F$. However, there exists such a field F with $R_F \not\leq_m S_F$.

Problem: Given a polynomial $p(X) \in F[X]$, compute another polynomial $q(X) \in F[X]$ such that

$$p(X) \text{ factors } \iff q(X) \text{ has a root.}$$
$p(X)$ factors in $F[X] \iff q(X)$ has a root in F.

Let F_t be the subfield $\mathbb{Q}[x_0, \ldots, x_{t-1}] \subseteq F$ (or $\mathbb{F}_m[x_0, \ldots, x_{t-1}] \subseteq F$). So every F_t has a splitting algorithm.

For a given $p(X)$, find a t with $p \in F_t[X]$. Check first whether p splits there. If so, pick its $q(X)$ to be a linear polynomial. If not, find the splitting field K_t of $p(X)$ over F_t, and the roots r_1, \ldots, r_d of $p(X)$ in K_t.
\(p(X) \) factors in \(F[X] \) \iff \(q(X) \) has a root in \(F \).

Let \(F_t \) be the subfield \(\mathbb{Q}[x_0, \ldots, x_{t-1}] \subseteq F \) (or \(\mathbb{F}_m[x_0, \ldots, x_{t-1}] \subseteq F \)). So every \(F_t \) has a splitting algorithm.

For a given \(p(X) \), find a \(t \) with \(p \in F_t[X] \). Check first whether \(p \) splits there. If so, pick its \(q(X) \) to be a linear polynomial. If not, find the splitting field \(K_t \) of \(p(X) \) over \(F_t \), and the roots \(r_1, \ldots, r_d \) of \(p(X) \) in \(K_t \).

Proposition

For \(F_t \subseteq L \subseteq K_t \): \(p(X) \) factors in \(L[X] \) \iff there is an \(S \) with \(\emptyset \subset S \subset \{ r_1, \ldots, r_d \} \) such that \(L \) contains all elementary symmetric polynomials in \(S \).

Proof: If \(p = p_0 \cdot p_1 \), let \(S = \{ r_i : p_0(r_i) = 0 \} \), and conversely.
$p(X)$ factors in $F[X] \iff q(X)$ has a root in F.

Let F_t be the subfield $\mathbb{Q}[x_0, \ldots, x_{t-1}] \subseteq F$ (or $\mathbb{F}_m[x_0, \ldots, x_{t-1}] \subseteq F$). So every F_t has a splitting algorithm.

For a given $p(X)$, find a t with $p \in F_t[X]$. Check first whether p splits there. If so, pick its $q(X)$ to be a linear polynomial. If not, find the splitting field K_t of $p(X)$ over F_t, and the roots r_1, \ldots, r_d of $p(X)$ in K_t.

Proposition

For $F_t \subseteq L \subseteq K_t$: $p(X)$ factors in $L[X] \iff$ there is an S with $\emptyset \subset S \subset \{r_1, \ldots, r_d\}$ such that L contains all elementary symmetric polynomials in S.

Proof: If $p = p_0 \cdot p_1$, let $S = \{r_i : p_0(r_i) = 0\}$, and conversely.

Effective Theorem of the Primitive Element

Each finite algebraic field extension is generated by a single element, and there is an algorithm for finding such a generator.
$p(X)$ factors in $F[X] \iff q(X)$ has a root in F.

For each intermediate field $F_t \subset L_S \subset K_t$ generated by the elementary symmetric polynomials in S, let x_S be a primitive generator. Let $q(X)$ be the product of the minimal polynomials $q_S(X) \in F_t[X]$ of each x_S.
\(p(X) \) factors in \(F[X] \) \iff \(q(X) \) has a root in \(F \).

For each intermediate field \(F_t \subsetneq L_S \subsetneq K_t \) generated by the elementary symmetric polynomials in \(S \), let \(x_S \) be a primitive generator. Let \(q(X) \) be the product of the minimal polynomials \(q_S(X) \in F_t[X] \) of each \(x_S \).

\(\Rightarrow \): If \(p(X) \) factors in \(F[X] \), then \(F \) contains some \(L_S \). But then \(x_S \in F \), and \(q(x_S) = 0 \).
$p(X)$ factors in $F[X] \iff q(X)$ has a root in F.

For each intermediate field $F_t \subsetneq L_S \subsetneq K_t$ generated by the elementary symmetric polynomials in S, let x_S be a primitive generator. Let $q(X)$ be the product of the minimal polynomials $q_S(X) \in F_t[X]$ of each x_S.

\Rightarrow: If $p(X)$ factors in $F[X]$, then F contains some L_S. But then $x_S \in F$, and $q(x_S) = 0$.

\Leftarrow: If $q(X)$ has a root $x \in F$, then some $q_S(x) = 0$, so x is F_t-conjugate to some x_S. Then some $\sigma \in \text{Gal}(K_t/F_t)$ maps x_S to x. But σ permutes the set $\{r_1, \ldots, r_d\}$, so x generates the subfield containing all elementary symmetric polynomials in $\sigma(S)$. Then F contains the subfield $L_{\sigma(S)}$, so $p(X)$ factors in $F[X]$.

Thus $S_F \leq_m R_F$.

Building an F with $R_F \not\preceq_m S_F$

Strategy to show that a single φ_e is not an m-reduction from R_F to S_F: have a witness polynomial $q_e(X) = X^5 - X - 1$, say, of degree 5, with splitting field K_e over \mathbb{Q} for which $\text{Gal}(K_e/\mathbb{Q})$ is the symmetric group S_5 on the five roots (all irrational) of q_e. We wish to make

$$q_e \in R_F \iff \varphi_e(q_e) \not\in S_F.$$

If $\varphi_e(q_e)$ halts and equals some polynomial $p_e(X) \in \mathbb{Q}[X]$, then either keep $F = \mathbb{Q}$ (if p_e is reducible there), or add a root of q_e to \mathbb{Q} to form F (if $\deg(p_e) < 2$), or . . .
q_e has no root in F \iff p_e factors over F

Let L be the splitting field of $p_e(X)$ over \mathbb{Q}, containing all roots x_1, \ldots, x_n of p_e. If $\mathbb{Q}[x_1]$ contains no root r_i of $q_e(X)$, then let $F = \mathbb{Q}[x_1]$. Else say (WLOG) $r_1 = h(x_1)$ for some $h(X) \in \mathbb{Q}[X]$. Then each $h(x_j) \in \{r_1, \ldots, r_5\}$, and each r_i is $h(x_j)$ for some j. Let F be the fixed field of the subgroup G_{12}:

$$G_{12} = \{ \sigma \in \text{Gal}(L/\mathbb{Q}) : \{ \sigma(r_1), \sigma(r_2) \} = \{ r_1, r_2 \} \}.$$

Then each $\sigma \in G_{12}$ fixes $I = \{ x_j : h(x_j) \in \{ r_1, r_2 \} \}$ setwise. So F contains all polynomials symmetric in I, and $p_e(X)$ splits in F. But there is a $\tau \in G_{12}$ which fixes no r_i. So $q_e(X)$ has no root in F.

Russell Miller (CUNY) Factoring and Finding Roots MathFest 2014 13 / 15
Defeating all φ_e at once

The foregoing argument built a computable algebraic field F for which a given φ_e was not an m-reduction from R_F to S_F. This shows that there is no uniform m-reduction that works across all such fields.

To see that there is a single such field F with $R_F \nleq_m S_F$, we need to execute the same procedure as above for every possible m-reduction φ_e. The danger here is that, in adding the fixed field of G_{12} to F for one polynomial p_e, to satisfy φ_e, we might add elements which would upset the strategy for defeating other functions $\varphi_{e'}$.

Solution: use a priority argument, in which each φ_e is assigned a natural number (in fact, e) as its priority. When two strategies clash, the one with higher priority (≡ with smaller e) decides what to do, and the other one is injured and starts over with a new polynomial q_e. Each individual strategy will be re-started only finitely many times, and will eventually ensure that φ_e is not an m-reduction.
Standard References on Computable Fields

These slides will be available soon at

qcpages.qc.cuny.edu/~rmiller/slides.html