Degrees of Categoricity of Algebraic Fields

Russell Miller

Queens College & CUNY Graduate Center
New York, NY

Penn State Logic Seminar

20 March 2012

Slides available at
qc.edu/~rmiller/slides.html
Computable Categoricity

Definition
A computable structure \mathcal{A} is *computably categorical* if for each computable $\mathcal{B} \cong \mathcal{A}$ there is a computable isomorphism from \mathcal{A} to \mathcal{B}.

Examples: (Dzgoev, Goncharov; Remmel; Lempp, McCoy, M., Solomon)

- A linear order is computably categorical iff it has only finitely many adjacencies.
- A Boolean algebra is computably categorical iff it has only finitely many atoms.
- An ordered Abelian group is computably categorical iff it has finite rank (\equiv basis as \mathbb{Z}-module).
- For trees (viewed as partial orders), the known criterion is recursive in the height and not easily stated!
Definition

For any Turing degree d, a computable structure A is d-computably categorical if for each computable $B \cong A$ there is a d-computable isomorphism from A to B.

Example

(ω, \prec) is 0'-computably categorical, although not computably categorical.
d-Computable Categoricity

Definition
For any Turing degree d, a computable structure \mathcal{A} is d-computably categorical if for each computable $\mathcal{B} \cong \mathcal{A}$ there is a d-computable isomorphism from \mathcal{A} to \mathcal{B}.

Example
$(\omega, <)$ is $0'$-computably categorical, although not computably categorical.

Definition
The *categoricity spectrum* of \mathcal{A} is the set of all d such that \mathcal{A} is d-computably categorical. The least such degree (if any) is the *degree of categoricity of \mathcal{A}*.
Fields

Definition

The *splitting set* of a field F is

$$\{ p(X) \in F[X] : \exists \text{ nonconstant } q_0, q_1 \in F[X] (q_0 \cdot q_1 = p) \}.$$

Facts:

1. The splitting set is Turing-equivalent to the *root set*

$$\{ p(X) \in F[X] : (\exists a \in F) p(a) = 0 \}.$$

2. For computable algebraic fields $F_0 \cong F_1$, the splitting sets are Turing-equivalent.

Proofs of these facts use **Rabin’s Theorem**: A computable field F has a splitting algorithm iff F has a computable embedding with computable image in a computable presentation of \overline{F}.

Negative Results

Theorem

There exists a computable algebraic field F which is not computably categorical, yet has computable splitting set.

First idea: Build computable fields $F \cong \tilde{F}$ with both square roots of each prime p_e. If $\varphi_{e,s}(\sqrt{p_e}) \downarrow y$ with $y^2 = \tilde{p}_e$ in \tilde{F}, we adjoin a p-th root of $\sqrt{p_e}$ in F and a p-th root of the square root $\neq y$ in \tilde{F}.

- Choose $p > s$ to ensure that F has computable splitting set.
- Always use distinct primes $p > 3$: adjoining a p-th root cannot cause any extraneous q-th roots to appear, for prime $q \neq p$.
Negative Results

Theorem

There exists a computable algebraic field F which is not computably categorical, yet has computable splitting set.

First idea: Build computable fields $F \cong \tilde{F}$ with both square roots of each prime p_e. If $\varphi_{e,s}(\sqrt{p_e}) \downarrow = y$ with $y^2 = \tilde{p}_e$ in \tilde{F}, we adjoin a p-th root of $\sqrt{p_e}$ in F and a p-th root of the square root $\neq y$ in \tilde{F}.

- Choose $p > s$ to ensure that F has computable splitting set.
- Always use distinct primes $p > 3$: adjoining a p-th root cannot cause any extraneous q-th roots to appear, for prime $q \neq p$.

Problem: Adding a p-th root of $\sqrt{p_e}$ puts a p-th root of the other square root of p_e into F as well.
Solution to the Problem

Proposition

Let p and d be odd primes, with $F = \mathbb{Q}[\sqrt{p}]$, and let $\sigma(\sqrt{p}) = -\sqrt{p}$. Then there exists a polynomial $h(X) \in F[X]$ of degree d, with image $h^-(X) \in F[X]$ under σ, such that:

- each of the splitting fields K and K^- of h and h^- over F has Galois group S_d over F; and
- the splitting field of h over K^- also has Galois group S_d, as does the splitting field of h^- over K.

So, when $\varphi_e(\sqrt{p_e}) \downarrow = \sqrt{\tilde{p}_e}$, we can adjoin a root of $h(X)$ in F and a root of $\tilde{h}^-(X)$ in \tilde{F}.
Solution to the Problem

Proposition

Let p and d be odd primes, with $F = \mathbb{Q}[\sqrt{p}]$, and let $\sigma(\sqrt{p}) = -\sqrt{p}$. Then there exists a polynomial $h(X) \in F[X]$ of degree d, with image $h^-(X) \in F[X]$ under σ, such that:

- each of the splitting fields K and K^- of h and h^- over F has Galois group S_d over F; and
- the splitting field of h over K^- also has Galois group S_d, as does the splitting field of h^- over K.

So, when $\varphi_e(\sqrt{p_e}) \downarrow = \sqrt{\tilde{p}_e}$, we can adjoin a root of $h(X)$ in F and a root of $\tilde{h}^-(X)$ in \tilde{F}. In fact, this gives us more power.

Theorem

There exists a computable algebraic field F which is not even \emptyset'-computably categorical.
A field F which is not $0'$-categorical

Build computable fields $F \cong \tilde{F}$ so that $(\forall e)$

$$f(x) = \lim_{s} \varphi_e(x, s)$$

is not an isomorphism.

Basic module for φ_e: Adjoin $\pm \sqrt{p_e}$ to F and \tilde{F}.

- While $\varphi_e(\sqrt{p_e}, s) \neq \pm \sqrt{\tilde{p_e}}$, do nothing.
- If $\varphi_e(\sqrt{p_e}, s) = \sqrt{\tilde{p_e}}$, then adjoin a root of an $h(X)$ to F, and a root of $\tilde{h}^-(X)$ to \tilde{F}.
- If later $\varphi_e(\sqrt{p_e}, s') = -\sqrt{\tilde{p_e}}$, then adjoin a root of $h^-(X)$ to F, and a root of $\tilde{h}(X)$ to \tilde{F}. Find a new $h(X)$ for $\sqrt{p_e}$, and do the reverse.

So if $\lim_s \varphi_e(\sqrt{p_e}, s)$ converges, then it chooses the wrong value.

And if $\lim_s \varphi_e(\sqrt{p_e}, s)$ diverges, then we satisfy the requirement and still have $F \cong \tilde{F}$.
Isomorphisms as Paths

Let $F = \{x_0, x_1, \ldots\}$. Find the minimal polynomial $q_i(X_i)$ of x_i over $\mathbb{Q}[x_0, \ldots, x_{i-1}]$. Write $p_i(x_0, \ldots, x_{i-1}, X_i) = q(X_i)$ with $p_i \in \mathbb{Q}[\tilde{X}]$.

Definition

The *isomorphism tree* $I_{F,\tilde{F}}$ is

$$\{ \sigma \in \tilde{F}^n : (\forall i < n) p_{i-1}(\sigma(0), \ldots, \sigma(i-1)) = 0 \}.$$

So each $\sigma \in I_{F,\tilde{F}}$ defines a partial isomorphism $F \to \tilde{F}$. Paths through $I_{F,\tilde{F}}$ correspond to (total) isomorphisms.
Theorem (Jockusch-Soare)

If T is a computable subset of $\omega^{<\omega}$ which forms a finite-branching infinite subtree, and

$$s(\sigma) = |\{\text{immediate successors of } \sigma \text{ in } T\}|$$

has degree s, then there is a path f through T with $f' \leq_T s'$. (Such a path f is said to be low relative to s.)

Indeed, for any fixed s, Jockusch and Soare produced a single degree t with $t' \leq_T s'$ which computes a path through every such tree.
d-Computable Categoricity

Recall: from the splitting set of F, we can compute the number of roots of $p_i(\sigma(0), \ldots, \sigma(i - 1), X_i)$ in \tilde{F}.

Theorem

If F is a computable algebraic field with splitting set S, then F is d-computably categorical for some Turing degree d with $d' \leq_T S'$.

Russell Miller (CUNY)

Degrees of Categoricity of Fields

Penn State Logic Seminar
Recall: from the splitting set of F, we can compute the number of roots of $p_i(\sigma(0), \ldots, \sigma(i-1), X_i)$ in \tilde{F}.

Theorem

If F is a computable algebraic field with splitting set S, then F is d-computably categorical for some Turing degree d with $d' \leq_T S'$.

Corollary

Every computable algebraic field with computable splitting set is d-computably categorical for some low Turing degree d, indeed for any PA-degree. (A *PA-degree* is the degree of a complete extension of Peano arithmetic.)
d-Computable Categoricity

Recall: from the splitting set of F, we can compute the number of roots of $p_i(\sigma(0), \ldots, \sigma(i-1), X_i)$ in \tilde{F}.

Theorem

If F is a computable algebraic field with splitting set S, then F is d-computably categorical for some Turing degree d with $d' \leq_T S'$.

Corollary

Every computable algebraic field with computable splitting set is d-computably categorical for some low Turing degree d, indeed for any PA-degree. (A *PA-degree* is the degree of a complete extension of Peano arithmetic.)

Corollary

Every computable algebraic field is d-computably categorical for some Turing degree d with $d' \leq_T 0''$, indeed for any PA-degree relative to $0'$.
Fact (Jockusch-Soare)

Every nonempty Π^0_1-class contains paths of degrees c, d with $c \land d = 0$.

Proposition

A computable algebraic field with splitting set S can only have degree of categoricity $\leq_T \deg(S)$.

Corollary

A computable algebraic field with computable splitting set cannot have nonzero degree of categoricity.
More about Degrees of Categoricity

Theorem

For c.e. degrees \(c \) and \(d \), we have \(c \leq_T d \) iff there exists a computable algebraic field \(F \) with degree of categoricity \(c \) and splitting set of degree \(d \).

Proof: Code a c.e. set \(C \in c \) into all isomorphisms between \(F \) and \(\tilde{F} \), by forcing \(\sqrt{p_{2e}} \mapsto \sqrt{\tilde{p}_{2e}} \) iff \(e \in C \). Code \(D \in d \) into the splitting set by adjoining the square roots of \(p_{2e+1} \) when/if \(e \) enters \(D \).
Extending the Results

Theorem

All d-computable categoricities so far are uniform. The same holds for computable fields of characteristic p algebraic over F_p.

- When the field has positive finite transcendence degree over \mathbb{Q}, the results still hold, but uniformity fails.
- In characteristic p, the results hold (non-uniformly) for separable algebraic extensions of $F_p(X_1, \ldots, X_n)$.
- For non-separable algebraic extensions of $F_p(X_1, \ldots, X_n)$, these questions remain open.

Isomorphism trees can be applied to other computable algebraic structures. Cf. work of Rebecca Steiner on finite-branching trees (under predecessor) and finite-valence connected graphs; also Hirschfeldt-Khoussainov-Soare on such graphs.
References on Computable Fields

- R. Steiner; Effective algebraicity, submitted for publication.