6.1 Introduction

- In this chapter, we learn:
 - New methods of using existing resources are the key to sustained long-run growth.
 - Why "nonrivalry" makes ideas different from other economic goods in a crucial way.
 - How the economics of ideas involves increasing returns and leads to problems with Adam Smith’s invisible hand.

- The Romer model of economic growth.

- How to combine the Romer and Solow models to get a full theory of long-run economic performance.

6.2 The Economics of Ideas

- Adam Smith’s invisible hand theorem states that perfectly competitive markets lead to the best of all possible worlds.

- Idea diagram:

 ![Idea Diagram](image)

- Ideas in the world
 - Are virtually infinite

- Objects in the world
 - Are finite

- Sustained economic growth occurs because of new ideas.
Nonrivalry

- Objects are rivalrous
 - One person’s use reduces their inherent usefulness to someone else.

- Ideas are nonrivalrous
 - One person’s use does not reduce their inherent usefulness to someone else.
 - Nonrivalry implies we do not need to reinvent ideas for additional use.

Nonrivalry is different from excludability.

Excludability
- Someone may legally restrict use of a good.
- Ideas may be excludable.

Increasing Returns

- Firms pay initial fixed costs to create new ideas but don’t need to reinvent the idea again later.

- Increasing returns to scale
 - A doubling of inputs will result in a more than doubling of outputs.

- Constant returns to scale
 - Average production per dollar spent is constant.
 - Doubling inputs exactly doubles output.
 - The standard replication argument implies constant returns to scale.

- Increasing returns to scale
 - Average production per dollar spent is rising as the scale of production increases.

Test for increasing returns
- Multiplying all inputs by two
- Increasing returns is present if output is then multiplied by more than two.

\[y_t = f(k_t, l_t, a_t) = a_t k_t^{1/3} l_t^{2/3} \]

\[f(2k, 2l, 2a) = 2^4 f(k, l, a) = 2 \cdot 2^{1/3} \cdot 2^{2/3} \cdot a \cdot k^{1/3} l^{2/3} \]

\[= 4 \cdot a \cdot k^{1/3} l^{2/3} = 4 \cdot f(k, l, a) \]

\[4 > 2 \]

increasing returns
Problems with Pure Competition

- Pareto optimal allocation
 - There is no way to change an allocation to make someone better off without making someone else worse off.
 - Perfect competition results in Pareto optimality because \(P = MC \).

- Under increasing returns to scale, a firm faces
 - Initial fixed costs
 - Marginal costs
- If \(P = MC \) under increasing returns, no firm will do research to invent new ideas.
 - The fixed research costs will never be recovered.

- Patents
 - Grant monopoly power over a good for a period
 - Generate positive profits
 - Provide incentive for innovation
- However, \(P > MC \) results in welfare loss.
- Other incentives for creating ideas may avoid welfare loss.
 - Government funding
 - Prizes

Case Study: Open Source Software and Altruism

- Profits are not the only way of encouraging innovation.
- Other motives:
 - Altruistic generosity
 - Desire to signal skills
 - “Purpose motives”

Case Study: Intellectual Property Rights in Developing Countries

- Why would poor countries ignore intellectual property rights?
 - Items or ideas obtained cheaply
 - May encourage multinational firms to relocate to developing countries

6.3 The Romer Model

- The Romer model
 - Focuses on the distinction between ideas and objects
 - Yields four equations
 - Stipulates that output requires knowledge and labor
- The production function of the Romer model
 - Constant returns to scale in objects alone
 - Increasing returns to scale in objects and ideas
• New ideas depend on
 – The existence of ideas in the previous period
 – The number of workers producing ideas
 – Worker productivity
 – Unregulated markets traditionally do not provide enough resources to produce ideas—and hence they are underprovided.
• The population
 – Workers producing ideas and workers producing output

Endogenous variables

\[L_{at} = \bar{\ell} \bar{L} \]

\[L_{yi} = (1 - \bar{\ell})\bar{L} \]

Unknowns/endogenous variables: \(Y_t, A_t, L_{yt}, L_{at} \)
Output production function \(Y_t = A_t L_{yt} \)

Innovation function: \(\Delta A_{t+1} = \bar{z}A_t L_{at} \)
Resource constraint \(L_{yt} + L_{at} = \bar{L} \)
Allocation of labor \(L_{at} = \bar{L} \)

Parameters: \(\bar{z}, \bar{L}, \bar{\ell}, A_0 \)

Recall that to solve a model we express all the endogenous variables in terms of the parameters and time.

Solving the Romer Model

• Romer model:
 – Output per person depends on the total stock of knowledge.
 \[y_t = \frac{Y_t}{L} = A_t (1 - \bar{\ell}) \]

• Solow model:
 – Output per person depends on capital per person.

\[\Delta A_{t+1} = \bar{z}A_t L_{at} = \bar{z} \bar{\ell} \bar{L} \]
• The stock of knowledge depends on its initial value and its growth rate.

\[
A_t = A_0 (1 + \bar{g})^t
\]

\[\bar{g} \equiv \bar{z} \bar{\ell} \bar{L}\]

Why is There Growth in the Romer Model?

• The Romer model produces the desired long-run economic growth that Solow did not.

• In the Solow model, capital has diminishing returns:
 \(\text{Eventually, capital and income stop growing.}\)

• The Romer model does not have diminishing returns to ideas because they are nonrivalous.

• Look at the exponents on the endogenous terms on the right side:
 \(\text{Labor and ideas have increasing returns together.}\)
 \(\text{Returns to ideas are unrestricted.}\)

• The Romer model does not have diminishing returns to ideas because they are nonrivalous.

\[
\Delta A_{t+1} = \bar{z} A_t \bar{L} \Delta t
\]

Balanced Growth

• The Solow model
 \(-\text{Transition dynamics}\)

• The Romer model
 \(-\text{Does not exhibit transition dynamics}\)
 \(-\text{Instead, has balanced growth path.}\)
 \(-\text{The growth rates of all endogenous variables are constant.}\)

\[\bar{g} = \bar{z} \bar{\ell} \bar{L}\]
Case Study: A Model of World Knowledge

- The United States has more researchers than Luxembourg has people.
- Growth rates 1960–2007
 - United States
 - 2.3 percent per year increase in per capita GDP
 - Luxembourg
 - 3.2 percent per year increase in per capita GDP
- How?
 - All countries can benefit from all ideas, no matter where the ideas were discovered.

Experiments in the Romer Model

Parameters in the Romer model:

\[y_t = \bar{A}_0 (1 - \bar{\ell})(1 + \bar{g})t \]

- Initial stock of ideas at time \(t = 0 \)
- Fraction of the population doing research
- Productivity
- Population

Experiment #1: Changing the Population

\[y_t = \bar{A}_0 (1 - \bar{\ell})(1 + \bar{g})t \]

- \(\bar{g} = \bar{z}\bar{\ell}\bar{L} \)
- A change in population changes the growth rate of knowledge.
- An increase in population will immediately and permanently raise the growth rate of per capita output.

Experiment #2: Changing the Research Share

\[y_t = \bar{A}_0 (1 - \bar{\ell})(1 + \bar{g})t \]

- \(\bar{g} = \bar{z}\bar{\ell}\bar{L} \)
- An increase in the fraction of labor making ideas, holding all other parameters equal, will increase the growth rate of knowledge.

- If more people work to produce ideas, less people produce output.
 - The level of output per capita jumps down initially.
- But the growth rate has increased for all future years.
 - Output per person will be higher in the long run.
Growth Effects versus Level Effects

- The exponent on ideas in the production function
 - Determines the returns to ideas alone
- If the exponent on ideas is not equal to 1:
 - The Romer model will still generate sustained growth.
 - Growth effects are eliminated if the exponent on ideas is less than 1.
 - due to diminishing returns

Case Study: Globalization and Ideas

- Consequences of globalization
 - Ideas can be shared more easily.
 - More gains from trade realized.
 - More technologies will come from developing economies.

6.4 Combining Solow and Romer: Overview

- The combined Solow-Romer model
 - Nonrivalry of ideas results in long-run growth along a balanced growth path
 - Exhibits transition dynamics if economy is not on its balanced growth path
 - For short periods of time
 - Countries can grow at different rates.
 - In the long run
 - Countries grow at the same rate.

6.5 Growth Accounting

- Growth accounting determines
 - The sources of growth in an economy
 - How they may change over time
- Consider a production function that includes both capital (K_t) and ideas (A_t).

\[Y_t = A_t K_t^{1/3} L_t^{2/3} \]

- The stock of ideas (A_t) is referred to as total factor productivity (TFP).
• Apply growth rate rules to the production function.
 – Growth rate version of the production function
 – The growth rate of each input weighted by its exponent

\[
g_{Yt} = g_{A_t} + \frac{1}{3}g_{Kt} + \frac{2}{3}g_{Lt}
\]

<table>
<thead>
<tr>
<th>Growth rate of output</th>
<th>Growth rate of knowledge</th>
<th>Growth contribution from capital</th>
<th>Growth contribution from workers</th>
</tr>
</thead>
</table>

• Adjust growth rates by labor hours.

\[
g_{Yt} - g_{L_t} = \frac{1}{3} (g_{Kt} - g_{L_t}) + \frac{2}{3} (g_{Lt} - g_{Lt}) + g_{Lt}
\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output per hour, Y/L</td>
<td>2.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Contribution of K/L</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Contribution of labor composition</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Contribution of TFP, A</td>
<td>1.4</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table 6.2: Growth Accounting for the United States

6.6 Concluding Our Study of Long-Run Growth

• Institutions (property rights, laws) play an important role in economic growth.
• The Solow and Romer models
 – Provide a basis for analyzing differences in growth across countries.
 – Do not answer why investment rates and TFP differ across countries.

From 1973–95
– Output in the United States grew half as fast as from 1948–73.
– This slower era of growth is known as the productivity slowdown.

From 1995–2002
– Output grew nearly as rapidly as before the productivity slowdown.
– This recent era is known as the new economy.

Case Study: Institutions, Ideas, and Charter Cities

• Institutions
 – Are nonrival
 – May help the poorest countries, even though many haven’t adopted this idea yet

• Charter Cities
 – Economy agrees to set the rules by which a new city is administered.
 – Hong Kong
6.7 A Postscript on Solow and Romer

• The Solow and Romer models have made many additional valuable contributions:
 – The modern theory of monopolistic competition
 – New understanding of exogenous technological progress

6.8 Additional Resources

• See the text for additional resources on ideas, institutions, and economic growth.

Summary

• Solow
 – Divides the world into capital and labor
• Romer
 – Divides the world into ideas and objects
• This distinction proves to be essential for understanding the engine of growth.

• Ideas
 – Are instructions for using objects in different ways
 – Are nonrivalrous; they are not scarce in the same way that objects are
 – Can be used by any number of people simultaneously without anyone’s use being degraded

• This nonrivalry implies
 – The economy is characterized by increasing returns to ideas and objects taken together.
• There are fixed costs associated with research (finding new ideas).
 – A reflection of the increasing returns

• Increasing returns imply that Adam Smith’s invisible hand may not lead to the best of all possible worlds.
• Prices must be above marginal cost in some places in order for firms to recoup the fixed cost of research.
• In the Solow model
 – Growth eventually ceases because capital runs into diminishing returns.

• In the Romer model
 – Because of nonrivalry, ideas need not run into diminishing returns.
 – This allows growth to be sustained.

• Combining the insights from Solow and Romer leads to a rich theory of economic growth.

• The growth of world knowledge explains the underlying upward trend in incomes.

• Countries may grow faster or slower than this world trend because of the principle of transition dynamics.

6.9 Appendix: Combining Solow and Romer (Algebraically)

• The combined model is set up by adding capital into the Romer model production function.

Additional Figures for Worked Problems

Setting Up the Combined Model

• The combined model features five equations and five unknowns.

• The five unknowns
 – Output Y_t
 – Capital K_t
 – Knowledge A_t
 – Workers L_t
 – Researchers L_{at}

The equations are:

\[Y_t = A_t K_t^{1/3} L_t^{2/3}, \]

\[\Delta K_{t+1} = \bar{\delta} Y_t - \bar{d} K_t, \]

\[\Delta A_{t+1} = \bar{\xi} A_t L_{at}, \]

\[L_{yt} + L_{at} = \bar{L}, \]

\[L_{at} = \bar{k} \bar{L}. \]
The production function for output
\[Y_t = A_t K_t^{1/3} L_t^{2/3}, \]

The accumulation of capital over time
\[\Delta K_{t+1} = \delta Y_t - \delta K_t, \]

Ideas
\[\Delta A_{t+1} = \bar{z} A_t L_{at}, \]

The numbers of workers and researchers sum to equal the total population.
\[L_{yt} + L_{at} = \overline{L}, \]

Our assumption that a constant fraction of the population works as researchers
\[L_{at} = \overline{\ell} \overline{L}. \]

The production function will have constant returns to scale in objects, but increasing returns in ideas and objects together.
\[Y_t = A_t K_t^{1/3} L_t^{2/3}, \]

The change in the capital stock is investment minus depreciation.
\[\Delta K_{t+1} = \delta Y_t - \overline{d} K_t, \]

Researchers are used to produce new ideas.
\[\Delta A_{t+1} = \bar{z} A_t L_{at}. \]

Solving the Combined Model

- The combined model will result in:
 - A balanced growth path
 - (since \(A_t \) increases continually over time)
 - Transition dynamics

Long-Run Growth

- To be on a balanced growth path, output, capital, and stock of ideas all must grow at constant rates.

Start with the production function for output and apply the rules for computing growth rates:
\[g_{Yt} = g_{At} + \frac{1}{3} g_{Kt} + \frac{2}{3} g_{Lyt} \]

\[g_{Yt} = \Delta Y_{t+1} / Y_t \]
To solve for the growth rate of knowledge
 – Divide the production function for new ideas by A_t

 $g_{At} = \frac{\Delta A_{t+1}}{A_t} = \bar{z}L_{at} = \bar{z}L$

To solve for the growth rate of capital
 – Divide the capital accumulation equation by K_t

 $g_{Kt} = \frac{\Delta K_{t+1}}{K_t} = \frac{Y_t}{K_t} - \bar{d}$

• Plug the results into

 $g_{yt} = g_{At} + \frac{1}{3}g_{Kt} + \frac{2}{3}g_{Lyt}$

 $g_{At} = \bar{z}L = \bar{g}$

 $g_{Kt}^* = g_{yt}^*$

 $g_{Lyt}^* = 0$

 $g_{yt}^* = \bar{g} + \frac{1}{3}g_{yt}^* + \frac{2}{3} \cdot 0$

• Solve for the growth rate of output

 $g_{yt}^* = \frac{3}{2} \bar{g} = \frac{3}{2} \bar{z} \bar{L}$

• For the long-run combined model, this equation pins down
 – The growth rate of output
 – The growth rate of output per person

• The growth rate in the number of workers is zero.
 – The number of workers is a constant fraction of the population.
 – We’ve assumed that the population itself is constant.

 Therefore: $g_{Lyt} = 0$

• The growth rate of output is even larger in the combined model than in the Romer model.

• Output is higher in this model because
 – Ideas have a direct and an indirect effect.
 – Increasing productivity raises output because
 • productivity has increased
 • higher productivity results in a higher capital stock.
Output per Person

- The equation for the capital stock can be solved for the capital-output ratio along a balanced growth path.

- The capital to output ratio is proportional to the investment rate along a balanced growth path.

\[
\frac{K^*_t}{Y^*_t} = \frac{\bar{s}}{g_y^* + \bar{d}}
\]

- This solution for the capital-output ratio can be substituted back into the production function and solved to get:

\[
y^*_t = \frac{Y^*_t}{L} = \left(\frac{\bar{s}}{g_y^* + \bar{d}}\right)^{1/2} A_t^{3/2} (1 - \bar{h})
\]

Transition Dynamics

- The Solow model and the combined model both have diminishing returns to capital.

- Thus, transition dynamics applies in both models.

- The principle of transition dynamics for the combined model
 - The farther below its balanced growth path an economy is, the faster the economy will grow.
 - The farther above its balanced growth path an economy is, the slower the economy will grow.

- A permanent increase in the investment rate in the combined model implies:
 - The balanced growth path of income is higher (parallel shift).
 - Current income is unchanged.
 - the economy is now below the new balanced growth path
 - The growth rate of income per capita is immediately higher.
 - the slope of the output path is steeper than the balanced growth path

- Growth in \(A_t \)
 - Leads to sustained growth in output per person along a balanced growth path

- Output \(y_t \)
 - Depends on the square root of the investment rate

- A higher investment rate
 - Raises the level of output per person along the balanced growth path.
• Changes in any parameter result in transition dynamics.

• The resulting theory:
 – Generates long-run growth through ideas
 – Explains differences in growth rates across countries through transition dynamics.