Computable Fields and their Algebraic Closures

Russell Miller

Queens College & CUNY Graduate Center New York, NY.

Workshop on Computability Theory
Universidade dos Açores
Ponta Delgada, Portugal, 6 July 2010

Slides available at gc.edu/~rmiller/slides.html

Classical Algebraic Closures

Theorem

Every field F has an algebraic closure \overline{F} : a field extension of F which is algebraically closed and algebraic over F. This *algebraic closure* of F is unique up to F-isomorphism.

Classical Algebraic Closures

Theorem

Every field F has an algebraic closure \overline{F} : a field extension of F which is algebraically closed and algebraic over F. This *algebraic closure* of F is unique up to F-isomorphism.

The theory $\mathsf{Th}(\mathsf{ACF}_m)$ of algebraically closed fields of characteristic m is κ -categorical for every uncountable κ , and has countable models

$$\overline{\mathbb{F}_m} \prec \overline{\mathbb{F}_m(X_0)} \prec \overline{\mathbb{F}_m(X_0, X_1)} \prec \cdots \prec \overline{\mathbb{F}_m(X_0, X_1, X_2, \ldots)}.$$

So ACF's of characteristic m are indexed by their transcendence degrees. (Here $\mathbb{F}_0=\mathbb{Q}$ and $\mathbb{F}_p=\mathbb{Z}/(p\mathbb{Z})$ for prime p.)

Classical Algebraic Closures

Theorem

Every field F has an algebraic closure \overline{F} : a field extension of F which is algebraically closed and algebraic over F. This *algebraic closure* of F is unique up to F-isomorphism.

The theory $\mathsf{Th}(\mathsf{ACF}_m)$ of algebraically closed fields of characteristic m is κ -categorical for every uncountable κ , and has countable models

$$\overline{\mathbb{F}_m} \prec \overline{\mathbb{F}_m(X_0)} \prec \overline{\mathbb{F}_m(X_0, X_1)} \prec \cdots \prec \overline{\mathbb{F}_m(X_0, X_1, X_2, \ldots)}.$$

So ACF's of characteristic m are indexed by their transcendence degrees. (Here $\mathbb{F}_0 = \mathbb{Q}$ and $\mathbb{F}_p = \mathbb{Z}/(p\mathbb{Z})$ for prime p.)

Fact

All countable ACF's are computably presentable.

Splitting Algorithms

Theorem (Kronecker, 1882)

- The field \mathbb{Q} has a splitting algorithm: it is decidable which polynomials in $\mathbb{Q}[X]$ have factorizations in $\mathbb{Q}[X]$.
- Let F be a computable field of characteristic 0 with a splitting algorithm. Every primitive extension F(x) of F also has a splitting algorithm, which may be found uniformly in the minimal polynomial of x over F (or uniformly knowing that x is transcendental over F).

Recall that for $x \in E$ algebraic over F, the minimal polynomial of x over F is the unique monic irreducible $p(X) \in F[X]$ with p(x) = 0.

Splitting Algorithms

Theorem (Kronecker, 1882)

- The field \mathbb{Q} has a splitting algorithm: it is decidable which polynomials in $\mathbb{Q}[X]$ have factorizations in $\mathbb{Q}[X]$.
- Let F be a computable field of characteristic 0 with a splitting algorithm. Every primitive extension F(x) of F also has a splitting algorithm, which may be found uniformly in the minimal polynomial of x over F (or uniformly knowing that x is transcendental over F).

Recall that for $x \in E$ algebraic over F, the minimal polynomial of x over F is the unique monic irreducible $p(X) \in F[X]$ with p(x) = 0.

Corollary

For any algebraic computable field F, every finitely generated subfield $\mathbb{Q}(x_1,\ldots,x_n)$ or $\mathbb{F}_p(x_1,\ldots,x_n)$ has a splitting algorithm, uniformly in the tuple $\langle x_1,\ldots,x_d \rangle$.

Computable Algebraic Closures

We want a presentation of \overline{F} with F as a recognizable subfield.

Defn.

For a computable field F, a Rabin embedding of F consists of a computable field E and a field homomorphism $g: F \to E$ such that:

- E is algebraically closed;
- E is algebraic over the image g(F); and
- g is a computable function.

Computable Algebraic Closures

We want a presentation of \overline{F} with F as a recognizable subfield.

Defn.

For a computable field F, a Rabin embedding of F consists of a computable field E and a field homomorphism $g: F \to E$ such that:

- E is algebraically closed;
- E is algebraic over the image g(F); and
- *g* is a computable function.

Rabin's Theorem (1960); see also Frohlich & Shepherdson (1956)

Every computable field F has a Rabin embedding. Moreover, for every Rabin embedding $g: F \to E$, the following are Turing-equivalent:

- the image g(F), as a subset of E;
- the *splitting set* $S_F = \{ p \in F[X] : p \text{ factors nontrivially in } F[X] \};$
- the root set $R_F = \{ p \in F[X] : p \text{ has a root in } F \}$.

Proof of Rabin's Theorem

 $R_F \leq_T S_F$

Given p(X), an S_F -oracle allows us to find the irreducible factors of p in F[X]. But $p \in R_F$ iff p has a linear factor.

Proof of Rabin's Theorem

$$R_F \leq_T S_F$$

Given p(X), an S_F -oracle allows us to find the irreducible factors of p in F[X]. But $p \in R_F$ iff p has a linear factor.

$$S_F \leq_T g(F)$$

Given a monic $p(X) \in F[X]$, find all its roots $r_1, \dots, r_d \in E$. Factorizations of its image p^g in E[X] are all of the form

$$p^{g}(X) = h(X) \cdot j(X) = (\prod_{i \in S} (X - r_i)) \cdot (\prod_{i \notin S} (X - r_i))$$

for some $S \subsetneq \{1, \dots, d\}$. Check if any of these factors lies in g(F)[X].

Proof of Rabin's Theorem

$$R_F \leq_T S_F$$

Given p(X), an S_F -oracle allows us to find the irreducible factors of p in F[X]. But $p \in R_F$ iff p has a linear factor.

$$S_F \leq_T g(F)$$

Given a monic $p(X) \in F[X]$, find all its roots $r_1, \dots, r_d \in E$. Factorizations of its image p^g in E[X] are all of the form

$$p^g(X) = h(X) \cdot j(X) = (\Pi_{i \in S}(X - r_i)) \cdot (\Pi_{i \notin S}(X - r_i))$$

for some $S \subsetneq \{1, \dots, d\}$. Check if any of these factors lies in g(F)[X].

$g(F) \leq_T R_F$

Given $x \in E$, find some $p(X) \in F[X]$ for which $p^g(x) = 0$. Find all roots of p in F: if $p \in R_F$, find a root $r_1 \in F$, then check if $\frac{p(X)}{X-r_1} \in R_F$, etc. Then $x \in g(F)$ iff x is the image of one of these roots.

Different Presentations of *F*

Theorem

Let $F \cong \tilde{F}$ be two computable presentations of the same field. Assume that F is algebraic (over its prime subfield \mathbb{Q} or \mathbb{F}_p). Then $R_F \equiv_T R_{\tilde{F}}$.

Proof: Given $p(X) \in F[X]$, find $q(X) \in \mathbb{F}_m[X]$ divisible by p(X). Use $R_{\tilde{F}}$ to find all roots of h(q)(X) in \tilde{F} . Then find the same number of roots of q(X) in F, and check whether any one is a root of p(X).

$$\begin{array}{ccc} F &\cong & \tilde{F} \\ & \bigcup | & & \bigcup | \\ h : & \mathbb{F}_m & \to & \tilde{\mathbb{F}}_m \end{array}$$

Comparing R_F , S_F , and g(F)

We know that $R_F \equiv_T S_F \equiv_T g(F)$. Is there any way to distinguish the complexity of these sets?

Comparing R_F , S_F , and g(F)

We know that $R_F \equiv_T S_F \equiv_T g(F)$. Is there any way to distinguish the complexity of these sets?

Recall: $A \le_1 B$ if there is a 1-1 computable f such that:

$$(\forall x)[x \in A \iff f(x) \in B].$$

 $A \leq_{\text{wtt}} B$ if there are Φ_e and a computable bound g with:

$$(\forall x)\Phi_e^{B\upharpoonright g(x)}(x)\downarrow=\chi_A(x).$$

Comparing R_F , S_F , and g(F)

We know that $R_F \equiv_T S_F \equiv_T g(F)$. Is there any way to distinguish the complexity of these sets?

Recall: $A \le_1 B$ if there is a 1-1 computable f such that:

$$(\forall x)[x \in A \iff f(x) \in B].$$

 $A \leq_{\text{wtt}} B$ if there are Φ_e and a computable bound g with:

$$(\forall x)\Phi_e^{B \mid g(x)}(x) \downarrow = \chi_A(x).$$

Theorem (M, 2010)

For all algebraic computable fields F, $S_F \leq_1 R_F$. However, there exists such a field F with $R_F \nleq_1 S_F$.

Problem: Given a polynomial $p(X) \in F[X]$, compute another polynomial $q(X) \in F[X]$ such that

$$p(X)$$
 splits $\iff q(X)$ has a root.

p(X) splits $\iff q(X)$ has a root.

Let F_t be the subfield $\mathbb{F}_m[a_0,\ldots,a_{t-1}]$. So every F_t has a splitting algorithm.

For a given p(X), find an t with $p \in F_t[X]$. Check first whether p splits there. If so, pick its q(X) to be a linear polynomial. If not, find the splitting field K_t of p(X) over F_t , and the roots r_1, \ldots, r_d of p(X) in K_t .

p(X) splits $\iff q(X)$ has a root.

Let F_t be the subfield $\mathbb{F}_m[a_0,\ldots,a_{t-1}]$. So every F_t has a splitting algorithm.

For a given p(X), find an t with $p \in F_t[X]$. Check first whether p splits there. If so, pick its q(X) to be a linear polynomial. If not, find the splitting field K_t of p(X) over F_t , and the roots r_1, \ldots, r_d of p(X) in K_t .

Proposition

For $F_t \subseteq L \subseteq K_t$, p(X) splits in L[X] iff there exists $\emptyset \subsetneq S \subsetneq \{r_1, \dots, r_d\}$ such that L contains all elementary symmetric polynomials in S.

p(X) splits $\iff q(X)$ has a root.

Let F_t be the subfield $\mathbb{F}_m[a_0,\ldots,a_{t-1}]$. So every F_t has a splitting algorithm.

For a given p(X), find an t with $p \in F_t[X]$. Check first whether p splits there. If so, pick its q(X) to be a linear polynomial. If not, find the splitting field K_t of p(X) over F_t , and the roots r_1, \ldots, r_d of p(X) in K_t .

Proposition

For $F_t \subseteq L \subseteq K_t$, p(X) splits in L[X] iff there exists $\emptyset \subsetneq S \subsetneq \{r_1, \dots, r_d\}$ such that L contains all elementary symmetric polynomials in S.

Effective Theorem of the Primitive Element

Each finite algebraic field extension is generated by a single element, which we can find effectively.

Procedure to Compute q(X)

For each intermediate field $F_t \subsetneq L_S \subsetneq K_t$ generated by the elementary symmetric polynomials in S, let x_S be a primitive generator. Let q(X) be the product of the minimal polynomials $q_S(X) \in F_t[X]$ of each x_S .

Procedure to Compute q(X)

For each intermediate field $F_t \subsetneq L_S \subsetneq K_t$ generated by the elementary symmetric polynomials in S, let x_S be a primitive generator. Let q(X) be the product of the minimal polynomials $q_S(X) \in F_t[X]$ of each x_S .

 \Rightarrow : If p(X) splits in F[X], then F contains some L_S . But then $x_S \in F$, and $q_S(x_S) = 0$.

Procedure to Compute q(X)

For each intermediate field $F_t \subsetneq L_S \subsetneq K_t$ generated by the elementary symmetric polynomials in S, let x_S be a primitive generator. Let q(X) be the product of the minimal polynomials $q_S(X) \in F_t[X]$ of each x_S .

 \Rightarrow : If p(X) splits in F[X], then F contains some L_S . But then $x_S \in F$, and $q_S(x_S) = 0$.

 \Leftarrow : If q(X) has a root $x \in F$, then some $q_S(x) = 0$, so x is F_t -conjugate to some x_S . Then some $\sigma \in \operatorname{Gal}(K_t/F_t)$ maps x_S to x. But σ permutes the set $\{r_1, \ldots, r_d\}$, so x generates the subfield containing all elementary symmetric polynomials in $\sigma(S)$. Then F contains the subfield $L_{\sigma(S)}$, so p(X) splits in F[X].

Thus $S_F <_1 R_F$.

No Reverse Reduction

Theorem (Steiner, 2010)

There exists a computable algebraic field F with $R_F \not\leq_{wtt} S_F$.

No Reverse Reduction

Theorem (Steiner, 2010)

There exists a computable algebraic field F with $R_F \not\leq_{wtt} S_F$.

Proof uses the following distinction between R_F and S_F :

Facts

For every Galois extension $L \supseteq \mathbb{Q}$ and all intermediate fields F_0 and F_1 :

$$R_{F_0} \cap \mathbb{Q}[X] = R_{F_1} \cap \mathbb{Q}[X] \iff \exists \sigma \in Gal(L/\mathbb{Q})[\sigma(F_0) = F_1].$$

But there exist such $L \supseteq F_1 \supsetneq F_0 \supseteq \mathbb{Q}$ for which

$$S_{F_0} \cap \mathbb{Q}[X] = S_{F_1} \cap \mathbb{Q}[X].$$

What about the Rabin Image g(F)?

Theorem (Steiner 2010)

Among the reducibilities \leq_T , \leq_{wtt} , \leq_m , and \leq_1 , the following are the strongest which hold for all computable algebraic fields F:

$$S_F \leq_1 R_F$$
 $S_F \leq_{\text{wtt}} g(F)$ $R_F \leq_{\text{wtt}} g(F)$ $R_F \leq_{\text{wtt}} g(F)$ $g(F) \leq_{\text{T}} S_F$ $g(F) \leq_{\text{wtt}} R_F$

So S_F is, relatively, the easiest to compute. R_F and g(F) appear the same – except that we have a field F with $S_F \leq_1 R_F$ and $S_F \not\leq_1 g(F)$. So R_F is stronger, in a subtle way.

What about the Rabin Image g(F)?

Theorem (Steiner 2010)

Among the reducibilities \leq_T , \leq_{wtt} , \leq_m , and \leq_1 , the following are the strongest which hold for all computable algebraic fields F:

$$S_F \leq_1 R_F$$
 $S_F \leq_{\text{wtt}} g(F)$ $R_F \leq_{\text{wtt}} g(F)$ $R_F \leq_{\text{wtt}} g(F)$ $g(F) \leq_{\text{T}} S_F$ $g(F) \leq_{\text{wtt}} R_F$

So S_F is, relatively, the easiest to compute. R_F and g(F) appear the same – except that we have a field F with $S_F \leq_1 R_F$ and $S_F \not\leq_1 g(F)$. So R_F is stronger, in a subtle way.

Remaining work: for isomorphic computable algebraic fields $F \cong \tilde{F}$, how do these sets compare?

Noncomputable Algebraic Fields

Now let F be any field algebraic over \mathbb{Q} (or over \mathbb{F}_p), but not necessarily computable. We wish to consider the *spectrum* of F:

$$Spec(F) = \{T-degrees \ \boldsymbol{d} : \exists K \cong F[deg(K) = \boldsymbol{d}]\}.$$

Problem: Describe Spec(F).

Noncomputable Algebraic Fields

Now let F be any field algebraic over \mathbb{Q} (or over \mathbb{F}_p), but not necessarily computable. We wish to consider the *spectrum* of F:

$$Spec(F) = \{T-degrees \ \boldsymbol{d} : \exists K \cong F[deg(K) = \boldsymbol{d}]\}.$$

Problem: Describe Spec(F).

Now if $K \cong F$ and $\deg(K) = \mathbf{d}$, then \mathbf{d} can enumerate $\mathbb{Q}_K \subseteq K$.

Moreover, d can compute the (unique) isomorphism from \mathbb{Q}_F onto a fixed computable copy of \mathbb{Q} .

Moreover, every $x \in K$ has a minimal polynomial over \mathbb{Q} , and d can find it. (Kronecker!) Thus d can enumerate $(\mathbb{Q}[X] \cap R_F)$.

Noncomputable Algebraic Fields

Now let F be any field algebraic over \mathbb{Q} (or over \mathbb{F}_p), but not necessarily computable. We wish to consider the *spectrum* of F:

$$\operatorname{Spec}(F) = \{\operatorname{T-degrees}\ \boldsymbol{d}: \exists K \cong F[\operatorname{deg}(K) = \boldsymbol{d}]\}.$$

Problem: Describe Spec(F).

Now if $K \cong F$ and $\deg(K) = \mathbf{d}$, then \mathbf{d} can enumerate $\mathbb{Q}_K \subseteq K$.

Moreover, \mathbf{d} can compute the (unique) isomorphism from \mathbb{Q}_F onto a fixed computable copy of \mathbb{Q} .

Moreover, every $x \in K$ has a minimal polynomial over \mathbb{Q} , and d can find it. (Kronecker!) Thus d can enumerate $(\mathbb{Q}[X] \cap R_F)$.

Theorem (Frolov, Kalimullin, & M 2009)

For any algebraic field extension $F \supseteq \mathbb{Q}$,

$$\operatorname{Spec}(F) = \{ \mathbf{d} : \mathbf{d} \text{ can enumerate } \mathbb{Q}[X] \cap R_F \}.$$

Useful Field Fact

The proof of the inclusion \supseteq uses:

Fact

For algebraic fields F and K, the following are equivalent:

- \bullet $F \cong K$.
- $F \hookrightarrow K$ and $K \hookrightarrow F$.
- Every f.g. subfield of each field embeds into the other field.

Let $\mathbb{Q}=K_0\subset K_1\subset K_2\subset \cdots=K$, and $f_s:K_s\to F$. By algebraicity, there are only finitely many possible embeddings of each K_s into F. So let $g_0=f_0$ and g_s be any extension of g_{s-1} such that

$$\exists^{\infty} t \geq s[f_t \upharpoonright K_s = g_s].$$

This is noneffective, but then $g = \cup_s g_s$ embeds K into F.

And for Algebraic Closures...

Now let \overline{F} be a computable copy of the algebraic closure of the algebraic field F. We have another notion of the spectrum:

$$\mathsf{DgSp}_{\overline{F}}(F) = \{ \mathsf{deg}(g(F)) : g : \overline{F} \to E \text{ is an isomorphism } \& \ E \leq_{\mathcal{T}} \emptyset \}.$$

Problem: Describe $DgSp_{\overline{F}}(F)$.

And for Algebraic Closures...

Now let \overline{F} be a computable copy of the algebraic closure of the algebraic field F. We have another notion of the spectrum:

$$\mathsf{DgSp}_{\overline{F}}(F) = \{ \mathsf{deg}(g(F)) : g : \overline{F} \to E \text{ is an isomorphism \& } E \leq_T \emptyset \}.$$

Problem: Describe $DgSp_{\overline{F}}(F)$.

Theorem (Frolov, Kalimullin, & M 2009)

For any algebraic field extension $F \supseteq \mathbb{Q}$, either

$$\mathsf{DgSp}_{\overline{F}}(F) = \{ \mathsf{deg}(\mathbb{Q}[X] \cap R_F) \}$$

or

$$\mathsf{DgSp}_{\overline{F}}(F) = \{ \mathbf{d} : \mathbf{d} \text{ can compute } \mathbb{Q}[X] \cap R_F \}.$$

So we have a contrast. For F as a field, the spectrum was really an upper cone of e-degrees. For F as a relation on \overline{F} , the spectrum is an upper cone of Turing degrees.

Galois Groups

Bad news: the automorphism group of a countable algebraic field can be uncountable! (E.g. $Aut(\overline{\mathbb{Q}})$ has size 2^{ω} .) So there is no hope that the Galois group of a computable field extension might always be computably presentable.

Galois Groups

Bad news: the automorphism group of a countable algebraic field can be uncountable! (E.g. $\operatorname{Aut}(\overline{\mathbb{Q}})$ has size 2^{ω} .) So there is no hope that the Galois group of a computable field extension might always be computably presentable.

Idea: name elements $\sigma \in \operatorname{Aut}(F)$ the way computable analysts name real numbers: by giving approximations $\sigma_n = \sigma \upharpoonright \{0, 1, \dots, n\}$. From such approximations to any $\sigma, \tau \in \operatorname{Aut}(F)$, we can likewise approximate $(\tau \circ \sigma)$.

Galois Actions

So, to give an effective presentation of Aut(F) in this manner, we need to be able to compute (or at least enumerate) the set

$$A_F = \{ \langle a_0, \dots, a_n : b_0, \dots, b_n \rangle : (\exists \sigma \in Aut(F))(\forall i) \ \sigma(a_i) = b_i \}.$$

This is the *full Galois action* of *F*. Equivalently, we need to compute or enumerate the orbit relation (or *Galois action*) on *F*:

$$B_F = \{ \langle a, b \rangle : \exists \sigma \in Aut(F) \ \sigma(a) = b \}.$$

The Galois action has recently proven useful in attempts (with Shlapentokh) to characterize computable categoricity for computable algebraic fields.

Standard References on Computable Fields

- Yu.L. Ershov; Theorie der Numerierungen III, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 23 (1977) 4, 289-371.
- A. Frohlich & J.C. Shepherdson; Effective procedures in field theory, *Phil. Trans. Royal Soc. London, Series A* 248 (1956) 950, 407-432.
- G. Metakides & A. Nerode; Effective content of field theory, Annals of Mathematical Logic 17 (1979), 289-320.
- M. Rabin; Computable algebra, general theory, and theory of computable fields, *Transactions of the American Mathematical* Society 95 (1960), 341-360.
- V. Stoltenberg-Hansen & J.V. Tucker; Computable rings and fields, in *Handbook of Computability Theory*, ed. E.R. Griffor (Amsterdam: Elsevier, 1999), 363-447.
- These slides available at qc.edu/~rmiller/slides.html