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Classical Algebraic Closures

Theorem

Every field F has an algebraic closure F : a field extension of F which
is algebraically closed and algebraic over F . This algebraic closure of
F is unique up to F -isomorphism.

The theory Th(ACFm) of algebraically closed fields of characteristic m
is κ-categorical for every uncountable κ, and has countable models

Fm ≺ Fm(X0) ≺ Fm(X0,X1) ≺ · · · ≺ Fm(X0,X1,X2, . . .).

So ACF’s of characteristic m are indexed by their transcendence
degrees. (Here F0 = Q and Fp = Z/(pZ) for prime p.)

Fact
All countable ACF’s are computably presentable.
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Splitting Algorithms

Theorem (Kronecker, 1882)
The field Q has a splitting algorithm: it is decidable which
polynomials in Q[X ] have factorizations in Q[X ].
Let F be a computable field of characteristic 0 with a splitting
algorithm. Every primitive extension F (x) of F also has a splitting
algorithm, which may be found uniformly in the minimal polynomial
of x over F (or uniformly knowing that x is transcendental over F ).

Recall that for x ∈ E algebraic over F , the minimal polynomial of x
over F is the unique monic irreducible p(X ) ∈ F [X ] with p(x) = 0.

Corollary
For any algebraic computable field F , every finitely generated subfield
Q(x1, . . . , xn) or Fp(x1, . . . , xn) has a splitting algorithm, uniformly in the
tuple 〈x1, . . . , xd〉.
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Computable Algebraic Closures
We want a presentation of F with F as a recognizable subfield.

Defn.
For a computable field F , a Rabin embedding of F consists of a
computable field E and a field homomorphism g : F → E such that:

E is algebraically closed;
E is algebraic over the image g(F ); and
g is a computable function.

Rabin’s Theorem (1960); see also Frohlich & Shepherdson (1956)
Every computable field F has a Rabin embedding. Moreover, for every
Rabin embedding g : F → E , the following are Turing-equivalent:

the image g(F ), as a subset of E ;
the splitting set SF = {p ∈ F [X ] : p factors nontrivially in F [X ]};
the root set RF = {p ∈ F [X ] : p has a root in F}.
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Proof of Rabin’s Theorem
RF ≤T SF

Given p(X ), an SF -oracle allows us to find the irreducible factors of p
in F [X ]. But p ∈ RF iff p has a linear factor.

SF ≤T g(F )

Given a monic p(X ) ∈ F [X ], find all its roots r1, . . . , rd ∈ E .
Factorizations of its image pg in E [X ] are all of the form

pg(X ) = h(X ) · j(X ) = (Πi∈S(X − ri)) · (Πi /∈S(X − ri))

for some S ( {1, . . . ,d}. Check if any of these factors lies in g(F )[X ].

g(F ) ≤T RF

Given x ∈ E , find some p(X ) ∈ F [X ] for which pg(x) = 0. Find all roots
of p in F : if p ∈ RF , find a root r1 ∈ F , then check if p(X)

X−r1
∈ RF , etc.

Then x ∈ g(F ) iff x is the image of one of these roots.
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Different Presentations of F

Theorem

Let F ∼= F̃ be two computable presentations of the same field. Assume
that F is algebraic (over its prime subfield Q or Fp). Then RF ≡T RF̃ .

Proof: Given p(X ) ∈ F [X ], find q(X ) ∈ Fm[X ] divisible by p(X ). Use
RF̃ to find all roots of h(q)(X ) in F̃ . Then find the same number of
roots of q(X ) in F , and check whether any one is a root of p(X ).

F ∼= F̃⋃
|

⋃
|

h : Fm → F̃m
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Comparing RF , SF , and g(F )
We know that RF ≡T SF ≡T g(F ). Is there any way to distinguish the
complexity of these sets?

Recall: A ≤1 B if there is a 1-1 computable f such that:

(∀x)[x ∈ A ⇐⇒ f (x) ∈ B].

A ≤wtt B if there are Φe and a computable bound g with:

(∀x)Φ
B�g(x)
e (x) ↓= χA(x).

Theorem (M, 2010)
For all algebraic computable fields F , SF ≤1 RF . However, there exists
such a field F with RF 6≤1 SF .

Problem: Given a polynomial p(X ) ∈ F [X ], compute another
polynomial q(X ) ∈ F [X ] such that

p(X ) splits ⇐⇒ q(X ) has a root.
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p(X ) splits ⇐⇒ q(X ) has a root.

Let Ft be the subfield Fm[a0, . . . ,at−1]. So every Ft has a splitting
algorithm.

For a given p(X ), find an t with p ∈ Ft [X ]. Check first whether p splits
there. If so, pick its q(X ) to be a linear polynomial. If not, find the
splitting field Kt of p(X ) over Ft , and the roots r1, . . . , rd of p(X ) in Kt .

Proposition
For Ft ⊆ L ⊆ Kt , p(X ) splits in L[X ] iff there exists ∅ ( S ( {r1, . . . , rd}
such that L contains all elementary symmetric polynomials in S.

Effective Theorem of the Primitive Element
Each finite algebraic field extension is generated by a single element,
which we can find effectively.
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Procedure to Compute q(X )

For each intermediate field Ft ( LS ( Kt generated by the elementary
symmetric polynomials in S, let xS be a primitive generator. Let q(X )
be the product of the minimal polynomials qS(X ) ∈ Ft [X ] of each xS.

⇒: If p(X ) splits in F [X ], then F contains some LS. But then xS ∈ F ,
and qS(xS) = 0.

⇐: If q(X ) has a root x ∈ F , then some qS(x) = 0, so x is
Ft -conjugate to some xS. Then some σ ∈ Gal(Kt/Ft ) maps xS to x .
But σ permutes the set {r1, . . . , rd}, so x generates the subfield
containing all elementary symmetric polynomials in σ(S). Then F
contains the subfield Lσ(S), so p(X ) splits in F [X ].

Thus SF ≤1 RF .
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No Reverse Reduction

Theorem (Steiner, 2010)
There exists a computable algebraic field F with RF 6≤wtt SF .

Proof uses the following distinction between RF and SF :

Facts
For every Galois extension L ⊇ Q and all intermediate fields F0 and F1:

RF0 ∩Q[X ] = RF1 ∩Q[X ] ⇐⇒ ∃σ ∈ Gal(L/Q)[σ(F0) = F1].

But there exist such L ⊇ F1 ) F0 ⊇ Q for which

SF0 ∩Q[X ] = SF1 ∩Q[X ].
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What about the Rabin Image g(F )?

Theorem (Steiner 2010)
Among the reducibilities ≤T , ≤wtt, ≤m, and ≤1, the following are the
strongest which hold for all computable algebraic fields F :

SF ≤1 RF SF ≤wtt g(F ) RF ≤wtt g(F )
RF ≤T SF g(F ) ≤T SF g(F ) ≤wtt RF

So SF is, relatively, the easiest to compute. RF and g(F ) appear the
same – except that we have a field F with SF ≤1 RF and SF 6≤1 g(F ).
So RF is stronger, in a subtle way.

Remaining work: for isomorphic computable algebraic fields F ∼= F̃ ,
how do these sets compare?
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Noncomputable Algebraic Fields
Now let F be any field algebraic over Q (or over Fp), but not
necessarily computable. We wish to consider the spectrum of F :

Spec(F ) = {T-degrees d : ∃K ∼= F [deg(K ) = d ]}.

Problem: Describe Spec(F ).

Now if K ∼= F and deg(K ) = d , then d can enumerate QK ⊆ K .
Moreover, d can compute the (unique) isomorphism from QF onto a
fixed computable copy of Q.
Moreover, every x ∈ K has a minimal polynomial over Q, and d can
find it. (Kronecker!) Thus d can enumerate (Q[X ] ∩ RF ).

Theorem (Frolov, Kalimullin, & M 2009)
For any algebraic field extension F ⊇ Q,

Spec(F ) = {d : d can enumerate Q[X ] ∩ RF}.
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Useful Field Fact

The proof of the inclusion ⊇ uses:

Fact
For algebraic fields F and K , the following are equivalent:

F ∼= K .
F ↪→ K and K ↪→ F .
Every f.g. subfield of each field embeds into the other field.

Let Q = K0 ⊂ K1 ⊂ K2 ⊂ · · · = K , and fs : Ks → F . By algebraicity,
there are only finitely many possible embeddings of each Ks into F . So
let g0 = f0 and gs be any extension of gs−1 such that

∃∞t ≥ s[ ft � Ks = gs ].

This is noneffective, but then g = ∪sgs embeds K into F .
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And for Algebraic Closures...
Now let F be a computable copy of the algebraic closure of the
algebraic field F . We have another notion of the spectrum:

DgSpF (F ) = {deg(g(F )) : g : F → E is an isomorphism & E ≤T ∅}.

Problem: Describe DgSpF (F ).

Theorem (Frolov, Kalimullin, & M 2009)
For any algebraic field extension F ⊇ Q, either

DgSpF (F ) = { deg(Q[X ] ∩ RF ) }

or
DgSpF (F ) = {d : d can compute Q[X ] ∩ RF}.

So we have a contrast. For F as a field, the spectrum was really an
upper cone of e-degrees. For F as a relation on F , the spectrum is an
upper cone of Turing degrees.
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Galois Groups

Bad news: the automorphism group of a countable algebraic field can
be uncountable! (E.g. Aut(Q) has size 2ω.) So there is no hope that
the Galois group of a computable field extension might always be
computably presentable.

Idea: name elements σ ∈ Aut(F ) the way computable analysts name
real numbers: by giving approximations σn = σ�{0,1, . . . ,n}. From
such approximations to any σ, τ ∈ Aut(F ), we can likewise
approximate (τ ◦ σ).
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Galois Actions

So, to give an effective presentation of Aut(F ) in this manner, we need
to be able to compute (or at least enumerate) the set

AF = {〈a0, . . . ,an : b0, . . . ,bn〉 : (∃σ ∈ Aut(F ))(∀i) σ(ai) = bi}.

This is the full Galois action of F . Equivalently, we need to compute or
enumerate the orbit relation (or Galois action) on F :

BF = {〈a,b〉 : ∃σ ∈ Aut(F ) σ(a) = b}.

The Galois action has recently proven useful in attempts (with
Shlapentokh) to characterize computable categoricity for computable
algebraic fields.
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