Computable Fields and their Algebraic Closures

Russell Miller
Queens College \& CUNY Graduate Center
New York, NY.

Workshop on Computability Theory
 Universidade dos Açores
 Ponta Delgada, Portugal, 6 July 2010

Slides available at
qc.edu/~rmiller/slides.html

Classical Algebraic Closures

Theorem

Every field F has an algebraic closure \bar{F} : a field extension of F which is algebraically closed and algebraic over F. This algebraic closure of F is unique up to F-isomorphism.

Classical Algebraic Closures

Theorem

Every field F has an algebraic closure \bar{F} : a field extension of F which is algebraically closed and algebraic over F. This algebraic closure of F is unique up to F-isomorphism.

The theory $\operatorname{Th}\left(\mathrm{ACF}_{m}\right)$ of algebraically closed fields of characteristic m is κ-categorical for every uncountable κ, and has countable models

$$
\overline{\mathbb{F}_{m}} \prec \overline{\mathbb{F}_{m}\left(X_{0}\right)} \prec \overline{\mathbb{F}_{m}\left(X_{0}, X_{1}\right)} \prec \cdots \prec \overline{\mathbb{F}_{m}\left(X_{0}, X_{1}, X_{2}, \ldots\right)}
$$

So ACF's of characteristic m are indexed by their transcendence degrees. (Here $\mathbb{F}_{0}=\mathbb{Q}$ and $\mathbb{F}_{p}=\mathbb{Z} /(p \mathbb{Z})$ for prime p.)

Classical Algebraic Closures

Theorem

Every field F has an algebraic closure \bar{F} : a field extension of F which is algebraically closed and algebraic over F. This algebraic closure of F is unique up to F-isomorphism.

The theory $\operatorname{Th}\left(\mathrm{ACF}_{m}\right)$ of algebraically closed fields of characteristic m is κ-categorical for every uncountable κ, and has countable models

$$
\overline{\mathbb{F}_{m}} \prec \overline{\mathbb{F}_{m}\left(X_{0}\right)} \prec \overline{\mathbb{F}_{m}\left(X_{0}, X_{1}\right)} \prec \cdots \prec \overline{\mathbb{F}_{m}\left(X_{0}, X_{1}, X_{2}, \ldots\right)}
$$

So ACF's of characteristic m are indexed by their transcendence degrees. (Here $\mathbb{F}_{0}=\mathbb{Q}$ and $\mathbb{F}_{p}=\mathbb{Z} /(p \mathbb{Z})$ for prime p.)

Fact

All countable ACF's are computably presentable.

Splitting Algorithms

Theorem (Kronecker, 1882)

- The field \mathbb{Q} has a splitting algorithm: it is decidable which polynomials in $\mathbb{Q}[X]$ have factorizations in $\mathbb{Q}[X]$.
- Let F be a computable field of characteristic 0 with a splitting algorithm. Every primitive extension $F(x)$ of F also has a splitting algorithm, which may be found uniformly in the minimal polynomial of x over F (or uniformly knowing that x is transcendental over F).

Recall that for $x \in E$ algebraic over F, the minimal polynomial of x over F is the unique monic irreducible $p(X) \in F[X]$ with $p(x)=0$.

Splitting Algorithms

Theorem (Kronecker, 1882)

- The field \mathbb{Q} has a splitting algorithm: it is decidable which polynomials in $\mathbb{Q}[X]$ have factorizations in $\mathbb{Q}[X]$.
- Let F be a computable field of characteristic 0 with a splitting algorithm. Every primitive extension $F(x)$ of F also has a splitting algorithm, which may be found uniformly in the minimal polynomial of x over F (or uniformly knowing that x is transcendental over F).

Recall that for $x \in E$ algebraic over F, the minimal polynomial of x over F is the unique monic irreducible $p(X) \in F[X]$ with $p(x)=0$.

Corollary

For any algebraic computable field F, every finitely generated subfield $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ or $\mathbb{F}_{p}\left(x_{1}, \ldots, x_{n}\right)$ has a splitting algorithm, uniformly in the tuple $\left\langle x_{1}, \ldots, x_{d}\right\rangle$.

Computable Algebraic Closures

We want a presentation of \bar{F} with F as a recognizable subfield.

Defn.

For a computable field F, a Rabin embedding of F consists of a computable field E and a field homomorphism $g: F \rightarrow E$ such that:

- E is algebraically closed;
- E is algebraic over the image $g(F)$; and
- g is a computable function.

Computable Algebraic Closures

We want a presentation of \bar{F} with F as a recognizable subfield.

Defn.

For a computable field F, a Rabin embedding of F consists of a computable field E and a field homomorphism $g: F \rightarrow E$ such that:

- E is algebraically closed;
- E is algebraic over the image $g(F)$; and
- g is a computable function.

Rabin's Theorem (1960); see also Frohlich \& Shepherdson (1956)

Every computable field F has a Rabin embedding. Moreover, for every Rabin embedding $g: F \rightarrow E$, the following are Turing-equivalent:

- the image $g(F)$, as a subset of E;
- the splitting set $S_{F}=\{p \in F[X]$: p factors nontrivially in $F[X]\}$;
- the root set $R_{F}=\{p \in F[X]: p$ has a root in $F\}$.

Proof of Rabin's Theorem

$R_{F} \leq_{T} S_{F}$

Given $p(X)$, an S_{F}-oracle allows us to find the irreducible factors of p in $F[X]$. But $p \in R_{F}$ iff p has a linear factor.

Proof of Rabin's Theorem

$R_{F} \leq_{T} S_{F}$

Given $p(X)$, an S_{F}-oracle allows us to find the irreducible factors of p in $F[X]$. But $p \in R_{F}$ iff p has a linear factor.

$S_{F} \leq_{T} g(F)$

Given a monic $p(X) \in F[X]$, find all its roots $r_{1}, \ldots, r_{d} \in E$. Factorizations of its image p^{g} in $E[X]$ are all of the form

$$
p^{g}(X)=h(X) \cdot j(X)=\left(\Pi_{i \in S}\left(X-r_{i}\right)\right) \cdot\left(\Pi_{i \notin S}\left(X-r_{i}\right)\right)
$$

for some $S \subsetneq\{1, \ldots, d\}$. Check if any of these factors lies in $g(F)[X]$.

Proof of Rabin's Theorem

$R_{F} \leq_{T} S_{F}$

Given $p(X)$, an S_{F}-oracle allows us to find the irreducible factors of p in $F[X]$. But $p \in R_{F}$ iff p has a linear factor.

$S_{F} \leq_{T} g(F)$

Given a monic $p(X) \in F[X]$, find all its roots $r_{1}, \ldots, r_{d} \in E$. Factorizations of its image p^{g} in $E[X]$ are all of the form

$$
p^{g}(X)=h(X) \cdot j(X)=\left(\Pi_{i \in S}\left(X-r_{i}\right)\right) \cdot\left(\Pi_{i \notin S}\left(X-r_{i}\right)\right)
$$

for some $S \subsetneq\{1, \ldots, d\}$. Check if any of these factors lies in $g(F)[X]$.
$g(F) \leq_{T} R_{F}$
Given $x \in E$, find some $p(X) \in F[X]$ for which $p^{g}(x)=0$. Find all roots of p in F : if $p \in R_{F}$, find a root $r_{1} \in F$, then check if $\frac{p(X)}{X-r_{1}} \in R_{F}$, etc. Then $x \in g(F)$ iff x is the image of one of these roots.

Different Presentations of F

Theorem

Let $F \cong \tilde{F}$ be two computable presentations of the same field. Assume that F is algebraic (over its prime subfield \mathbb{Q} or \mathbb{F}_{p}). Then $R_{F} \equiv{ }_{T} R_{\tilde{F}}$.

Proof: Given $p(X) \in F[X]$, find $q(X) \in \mathbb{F}_{m}[X]$ divisible by $p(X)$. Use $R_{\tilde{F}}$ to find all roots of $h(q)(X)$ in \tilde{F}. Then find the same number of roots of $q(X)$ in F, and check whether any one is a root of $p(X)$.

$$
\begin{aligned}
F & \cong \tilde{F} \\
U \mid & U \mid \\
h: \mathbb{F}_{m} & \rightarrow \tilde{\mathbb{F}}_{m}
\end{aligned}
$$

Comparing R_{F}, S_{F}, and $g(F)$

We know that $R_{F} \equiv_{T} S_{F} \equiv_{T} g(F)$. Is there any way to distinguish the complexity of these sets?

Comparing R_{F}, S_{F}, and $g(F)$

We know that $R_{F} \equiv_{T} S_{F} \equiv_{T} g(F)$. Is there any way to distinguish the complexity of these sets?
Recall: $A \leq_{1} B$ if there is a 1-1 computable f such that:

$$
(\forall x)[x \in A \quad \Longleftrightarrow \quad f(x) \in B] .
$$

$A \leq_{w t t} B$ if there are Φ_{e} and a computable bound g with:

$$
(\forall x) \Phi_{e}^{B \mid g(x)}(x) \downarrow=\chi_{A}(x)
$$

Comparing R_{F}, S_{F}, and $g(F)$

We know that $R_{F} \equiv_{T} S_{F} \equiv_{T} g(F)$. Is there any way to distinguish the complexity of these sets?
Recall: $A \leq_{1} B$ if there is a 1-1 computable f such that:

$$
(\forall x)[x \in A \quad \Longleftrightarrow \quad f(x) \in B] .
$$

$A \leq_{w t t} B$ if there are Φ_{e} and a computable bound g with:

$$
(\forall x) \Phi_{e}^{B\lceil g(x)}(x) \downarrow=\chi_{A}(x)
$$

Theorem (M, 2010)

For all algebraic computable fields $F, S_{F} \leq_{1} R_{F}$. However, there exists such a field F with $R_{F} \not \mathbb{L}_{1} S_{F}$.

Problem: Given a polynomial $p(X) \in F[X]$, compute another polynomial $q(X) \in F[X]$ such that

$$
p(X) \text { splits } \Longleftrightarrow q(X) \text { has a root. }
$$

$p(X)$ splits $\Longleftrightarrow q(X)$ has a root.

Let F_{t} be the subfield $\mathbb{F}_{m}\left[a_{0}, \ldots, a_{t-1}\right]$. So every F_{t} has a splitting algorithm.

For a given $p(X)$, find an t with $p \in F_{t}[X]$. Check first whether p splits there. If so, pick its $q(X)$ to be a linear polynomial. If not, find the splitting field K_{t} of $p(X)$ over F_{t}, and the roots r_{1}, \ldots, r_{d} of $p(X)$ in K_{t}.

$p(X)$ splits $\Longleftrightarrow q(X)$ has a root.

Let F_{t} be the subfield $\mathbb{F}_{m}\left[a_{0}, \ldots, a_{t-1}\right]$. So every F_{t} has a splitting algorithm.
For a given $p(X)$, find an t with $p \in F_{t}[X]$. Check first whether p splits there. If so, pick its $q(X)$ to be a linear polynomial. If not, find the splitting field K_{t} of $p(X)$ over F_{t}, and the roots r_{1}, \ldots, r_{d} of $p(X)$ in K_{t}.

Proposition

For $F_{t} \subseteq L \subseteq K_{t}, p(X)$ splits in $L[X]$ iff there exists $\emptyset \subsetneq S \subsetneq\left\{r_{1}, \ldots, r_{d}\right\}$ such that L contains all elementary symmetric polynomials in S.

$p(X)$ splits $\Longleftrightarrow q(X)$ has a root.

Let F_{t} be the subfield $\mathbb{F}_{m}\left[a_{0}, \ldots, a_{t-1}\right]$. So every F_{t} has a splitting algorithm.
For a given $p(X)$, find an t with $p \in F_{t}[X]$. Check first whether p splits there. If so, pick its $q(X)$ to be a linear polynomial. If not, find the splitting field K_{t} of $p(X)$ over F_{t}, and the roots r_{1}, \ldots, r_{d} of $p(X)$ in K_{t}.

Proposition

For $F_{t} \subseteq L \subseteq K_{t}, p(X)$ splits in $L[X]$ iff there exists $\emptyset \subsetneq S \subsetneq\left\{r_{1}, \ldots, r_{d}\right\}$ such that L contains all elementary symmetric polynomials in S.

Effective Theorem of the Primitive Element

Each finite algebraic field extension is generated by a single element, which we can find effectively.

Procedure to Compute $q(X)$

For each intermediate field $F_{t} \subsetneq L_{S} \subsetneq K_{t}$ generated by the elementary symmetric polynomials in S, let x_{S} be a primitive generator. Let $q(X)$ be the product of the minimal polynomials $q_{S}(X) \in F_{t}[X]$ of each x_{S}.

Procedure to Compute $q(X)$

For each intermediate field $F_{t} \subsetneq L_{S} \subsetneq K_{t}$ generated by the elementary symmetric polynomials in S, let x_{S} be a primitive generator. Let $q(X)$ be the product of the minimal polynomials $q_{S}(X) \in F_{t}[X]$ of each x_{S}.
\Rightarrow : If $p(X)$ splits in $F[X]$, then F contains some L_{S}. But then $x_{S} \in F$, and $q_{S}\left(x_{S}\right)=0$.

Procedure to Compute $q(X)$

For each intermediate field $F_{t} \subsetneq L_{S} \subsetneq K_{t}$ generated by the elementary symmetric polynomials in S, let x_{S} be a primitive generator. Let $q(X)$ be the product of the minimal polynomials $q_{S}(X) \in F_{t}[X]$ of each x_{S}.
\Rightarrow : If $p(X)$ splits in $F[X]$, then F contains some L_{s}. But then $x_{S} \in F$, and $q_{S}\left(x_{S}\right)=0$.
\Leftarrow : If $q(X)$ has a root $x \in F$, then some $q_{S}(x)=0$, so x is F_{t}-conjugate to some x_{S}. Then some $\sigma \in \operatorname{Gal}\left(K_{t} / F_{t}\right) \operatorname{maps} x_{S}$ to x. But σ permutes the set $\left\{r_{1}, \ldots, r_{d}\right\}$, so x generates the subfield containing all elementary symmetric polynomials in $\sigma(S)$. Then F contains the subfield $L_{\sigma(S)}$, so $p(X)$ splits in $F[X]$.
Thus $S_{F} \leq_{1} R_{F}$.

No Reverse Reduction

Theorem (Steiner, 2010)

There exists a computable algebraic field F with $R_{F} Z_{\text {wtt }} S_{F}$.

No Reverse Reduction

Theorem (Steiner, 2010)

There exists a computable algebraic field F with $R_{F} \mathbb{Z}_{\mathrm{wtt}} S_{F}$.
Proof uses the following distinction between R_{F} and S_{F} :

Facts

For every Galois extension $L \supseteq \mathbb{Q}$ and all intermediate fields F_{0} and F_{1} :

$$
R_{F_{0}} \cap \mathbb{Q}[X]=R_{F_{1}} \cap \mathbb{Q}[X] \quad \Longleftrightarrow \quad \exists \sigma \in \operatorname{Gal}(L / \mathbb{Q})\left[\sigma\left(F_{0}\right)=F_{1}\right] .
$$

But there exist such $L \supseteq F_{1} \supsetneq F_{0} \supseteq \mathbb{Q}$ for which

$$
S_{F_{0}} \cap \mathbb{Q}[X]=S_{F_{1}} \cap \mathbb{Q}[X] .
$$

What about the Rabin Image $g(F)$?

Theorem (Steiner 2010)

Among the reducibilities $\leq_{T}, \leq_{w t t}, \leq_{m}$, and \leq_{1}, the following are the strongest which hold for all computable algebraic fields F :

$$
\begin{array}{lcc}
S_{F} \leq_{1} R_{F} & S_{F} \leq_{w t t} g(F) & R_{F} \leq_{w t t} g(F) \\
R_{F} \leq_{T} S_{F} & g(F) \leq_{T} S_{F} & g(F) \leq_{w t t} R_{F}
\end{array}
$$

So S_{F} is, relatively, the easiest to compute. R_{F} and $g(F)$ appear the same - except that we have a field F with $S_{F} \leq_{1} R_{F}$ and $S_{F} \not \leq_{1} g(F)$. So R_{F} is stronger, in a subtle way.

What about the Rabin Image $g(F)$?

Theorem (Steiner 2010)

Among the reducibilities \leq_{T}, $\leq_{w t t}, \leq_{m}$, and \leq_{1}, the following are the strongest which hold for all computable algebraic fields F :

$$
\begin{array}{lcc}
S_{F} \leq_{1} R_{F} & S_{F} \leq_{w t t} g(F) & R_{F} \leq_{w t t} g(F) \\
R_{F} \leq_{T} S_{F} & g(F) \leq T S_{F} & g(F) \leq_{w t t} R_{F}
\end{array}
$$

So S_{F} is, relatively, the easiest to compute. R_{F} and $g(F)$ appear the same - except that we have a field F with $S_{F} \leq_{1} R_{F}$ and $S_{F} \leq_{1} g(F)$. So R_{F} is stronger, in a subtle way.

Remaining work: for isomorphic computable algebraic fields $F \cong \tilde{F}$, how do these sets compare?

Noncomputable Algebraic Fields

Now let F be any field algebraic over \mathbb{Q} (or over \mathbb{F}_{p}), but not necessarily computable. We wish to consider the spectrum of F :

$$
\operatorname{Spec}(F)=\{\text { T-degrees } \boldsymbol{d}: \exists K \cong F[\operatorname{deg}(K)=\boldsymbol{d}]\}
$$

Problem: Describe Spec (F).

Noncomputable Algebraic Fields

Now let F be any field algebraic over \mathbb{Q} (or over \mathbb{F}_{p}), but not necessarily computable. We wish to consider the spectrum of F :

$$
\operatorname{Spec}(F)=\{\text { T-degrees } \boldsymbol{d}: \exists K \cong F[\operatorname{deg}(K)=\boldsymbol{d}]\}
$$

Problem: Describe $\operatorname{Spec}(F)$.
Now if $K \cong F$ and $\operatorname{deg}(K)=\boldsymbol{d}$, then \boldsymbol{d} can enumerate $\mathbb{Q}_{K} \subseteq K$.
Moreover, \boldsymbol{d} can compute the (unique) isomorphism from \mathbb{Q}_{F} onto a fixed computable copy of \mathbb{Q}.
Moreover, every $x \in K$ has a minimal polynomial over \mathbb{Q}, and \boldsymbol{d} can find it. (Kronecker!) Thus \boldsymbol{d} can enumerate $\left(\mathbb{Q}[X] \cap R_{F}\right)$.

Noncomputable Algebraic Fields

Now let F be any field algebraic over \mathbb{Q} (or over \mathbb{F}_{p}), but not necessarily computable. We wish to consider the spectrum of F :

$$
\operatorname{Spec}(F)=\{\text { T-degrees } \boldsymbol{d}: \exists K \cong F[\operatorname{deg}(K)=\boldsymbol{d}]\} .
$$

Problem: Describe Spec (F).
Now if $K \cong F$ and $\operatorname{deg}(K)=\boldsymbol{d}$, then \boldsymbol{d} can enumerate $\mathbb{Q}_{K} \subseteq K$.
Moreover, \boldsymbol{d} can compute the (unique) isomorphism from \mathbb{Q}_{F} onto a fixed computable copy of \mathbb{Q}.
Moreover, every $x \in K$ has a minimal polynomial over \mathbb{Q}, and \boldsymbol{d} can find it. (Kronecker!) Thus \boldsymbol{d} can enumerate $\left(\mathbb{Q}[X] \cap R_{F}\right.$).

Theorem (Frolov, Kalimullin, \& M 2009)

For any algebraic field extension $F \supseteq \mathbb{Q}$,

$$
\operatorname{Spec}(F)=\left\{\boldsymbol{d}: \boldsymbol{d} \text { can enumerate } \mathbb{Q}[X] \cap R_{F}\right\} .
$$

Useful Field Fact

The proof of the inclusion \supseteq uses:

Fact

For algebraic fields F and K, the following are equivalent:

- $F \cong K$.
- $F \hookrightarrow K$ and $K \hookrightarrow F$.
- Every f.g. subfield of each field embeds into the other field.

Let $\mathbb{Q}=K_{0} \subset K_{1} \subset K_{2} \subset \cdots=K$, and $f_{s}: K_{s} \rightarrow F$. By algebraicity, there are only finitely many possible embeddings of each K_{s} into F. So let $g_{0}=f_{0}$ and g_{s} be any extension of g_{s-1} such that

$$
\exists^{\infty} t \geq s\left[f_{t} \upharpoonright K_{s}=g_{s}\right]
$$

This is noneffective, but then $g=\cup_{s} g_{s}$ embeds K into F.

And for Algebraic Closures...

Now let \bar{F} be a computable copy of the algebraic closure of the algebraic field F. We have another notion of the spectrum:

$$
\operatorname{DgSp}_{\bar{F}}(F)=\left\{\operatorname{deg}(g(F)): g: \bar{F} \rightarrow E \text { is an isomorphism \& } E \leq_{T} \emptyset\right\} .
$$

Problem: Describe $\operatorname{DgSp}_{\bar{F}}(F)$.

And for Algebraic Closures...

Now let \bar{F} be a computable copy of the algebraic closure of the algebraic field F. We have another notion of the spectrum:

$$
\operatorname{DgSp}_{\bar{F}}(F)=\left\{\operatorname{deg}(g(F)): g: \bar{F} \rightarrow E \text { is an isomorphism \& } E \leq_{T} \emptyset\right\} .
$$

Problem: Describe $\operatorname{DgSp}_{\bar{F}}(F)$.

Theorem (Frolov, Kalimullin, \& M 2009)

For any algebraic field extension $F \supseteq \mathbb{Q}$, either

$$
\operatorname{DgSp}_{\bar{F}}(F)=\left\{\operatorname{deg}\left(\mathbb{Q}[X] \cap R_{F}\right)\right\}
$$

or

$$
\operatorname{DgSp}_{\bar{F}}(F)=\left\{\boldsymbol{d}: \boldsymbol{d} \text { can compute } \mathbb{Q}[X] \cap R_{F}\right\} .
$$

So we have a contrast. For F as a field, the spectrum was really an upper cone of e-degrees. For F as a relation on \bar{F}, the spectrum is an upper cone of Turing degrees.

Galois Groups

Bad news: the automorphism group of a countable algebraic field can be uncountable! (E.g. Aut $(\overline{\mathbb{Q}})$ has size 2^{ω}.) So there is no hope that the Galois group of a computable field extension might always be computably presentable.

Galois Groups

Bad news: the automorphism group of a countable algebraic field can be uncountable! (E.g. Aut ($\overline{\mathbb{Q}})$ has size 2^{ω}.) So there is no hope that the Galois group of a computable field extension might always be computably presentable.

Idea: name elements $\sigma \in \operatorname{Aut}(F)$ the way computable analysts name real numbers: by giving approximations $\sigma_{n}=\sigma \upharpoonright\{0,1, \ldots, n\}$. From such approximations to any $\sigma, \tau \in \operatorname{Aut}(F)$, we can likewise approximate $(\tau \circ \sigma)$.

Galois Actions

So, to give an effective presentation of $\operatorname{Aut}(F)$ in this manner, we need to be able to compute (or at least enumerate) the set

$$
A_{F}=\left\{\left\langle a_{0}, \ldots, a_{n}: b_{0}, \ldots, b_{n}\right\rangle:(\exists \sigma \in \operatorname{Aut}(F))(\forall i) \sigma\left(a_{i}\right)=b_{i}\right\} .
$$

This is the full Galois action of F. Equivalently, we need to compute or enumerate the orbit relation (or Galois action) on F:

$$
B_{F}=\{\langle a, b\rangle: \exists \sigma \in \operatorname{Aut}(F) \sigma(a)=b\} .
$$

The Galois action has recently proven useful in attempts (with Shlapentokh) to characterize computable categoricity for computable algebraic fields.

Standard References on Computable Fields

- Yu.L. Ershov; Theorie der Numerierungen III, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 23 (1977) 4, 289-371.
- A. Frohlich \& J.C. Shepherdson; Effective procedures in field theory, Phil. Trans. Royal Soc. London, Series A 248 (1956) 950, 407-432.
- G. Metakides \& A. Nerode; Effective content of field theory, Annals of Mathematical Logic 17 (1979), 289-320.
- M. Rabin; Computable algebra, general theory, and theory of computable fields, Transactions of the American Mathematical Society 95 (1960), 341-360.
- V. Stoltenberg-Hansen \& J.V. Tucker; Computable rings and fields, in Handbook of Computability Theory, ed. E.R. Griffor (Amsterdam: Elsevier, 1999), 363-447.
- These slides available at qc.edu/~rmiller/slides.html

