Coordinates, Now with More Dimensions....

2D Coordinates

3D Coordinates

Variables: x (indep), y (dep)
Axes: x-axis $\perp y$-axis

Coordinates, Now with More Dimensions....

2D Coordinates

Variables: x (indep), y (dep)
Axes: x-axis $\perp y$-axis

Coordinates of a point: $\quad(a, b)$ Go a units in x-direction, b in y.

3D Coordinates

Coordinates, Now with More Dimensions....

2D Coordinates

3D Coordinates

Variables: x (indep), y (dep)
Axes: x-axis $\perp y$-axis

Coordinates of a point: $\quad(a, b)$ Go a units in x-direction, b in y.
Projection onto x-axis: $\quad(a, 0)$
(drop a line \perp from point to x-axis.)

Coordinates, Now with More Dimensions....

2D Coordinates

Variables: x (indep), y (dep)
Axes: x-axis $\perp y$-axis

Coordinates of a point: $\quad(a, b)$ Go a units in x-direction, b in y. Projection onto x-axis: $\quad(a, 0)$ (drop a line \perp from point to x-axis.)

3D Coordinates

Variables: x, y (indef), z (dep)
Axes: x-axis $\perp y$-axis $\perp z$-axis

Coordinates, Now with More Dimensions....

2D Coordinates

Variables: x (indep), y (dep)
Axes: x-axis $\perp y$-axis

3D Coordinates

Variables: x, y (indep), z (dep)
Axes: x-axis $\perp y$-axis $\perp z$-axis
(right hand rule)

Coordinates of a point: $\quad(a, b)$ Go a units in x-direction, b in y. Projection onto x-axis: $\quad(a, 0)$ (drop a line \perp from point to x-axis.)

Coordinates, Now with More Dimensions....

2D Coordinates

Variables: x (indep), y (dep)
Axes: x-axis $\perp y$-axis

Coordinates of a point: $\quad(a, b)$ Go a units in x-direction, b in y. Projection onto x-axis: $\quad(a, 0)$ (drop a line \perp from point to x-axis.)

3D Coordinates

Variables: x, y (indep), z (dep)
Axes: x-axis $\perp y$-axis $\perp z$-axis
(right hand rule)
Coordinates of a point: $\quad(a, b, c)$
Go a units in x-dir, b in y, c in z.

Coordinates, Now with More Dimensions....

2D Coordinates

Variables: x (indep), y (dep)
Axes: x-axis $\perp y$-axis

Coordinates of a point: $\quad(a, b)$ Go a units in x-direction, b in y. Projection onto x-axis: $\quad(a, 0)$ (drop a line \perp from point to x-axis.)

3D Coordinates

Variables: x, y (indep), z (dep)
Axes: x-axis $\perp y$-axis $\perp z$-axis
(right hand rule)
Coordinates of a point: $\quad(a, b, c)$
Go a units in x-dir, b in y, c in z. Projection onto $x y$-plane: $(a, b, 0)$ (drop a line \perp from point to $x y$-plane)

Coordinates, Now with More Dimensions....

2D Coordinates

Variables: x (indep), y (dep)
Axes: x-axis $\perp y$-axis

Coordinates of a point: $\quad(a, b)$ Go a units in x-direction, b in y. Projection onto x-axis: $\quad(a, 0)$ (drop a line \perp from point to x-axis.) Distance from origin: $\sqrt{a^{2}+b^{2}}$

3D Coordinates

Variables: x, y (indep), z (dep)
Axes: x-axis $\perp y$-axis $\perp z$-axis
(right hand rule)
Coordinates of a point: $\quad(a, b, c)$
Go a units in x-dir, b in y, c in z. Projection onto $x y$-plane: $(a, b, 0)$ (drop a line \perp from point to $x y$-plane)

Coordinates, Now with More Dimensions....

2D Coordinates

Variables: x (indep), y (dep)
Axes: x-axis $\perp y$-axis

Coordinates of a point: $\quad(a, b)$ Go a units in x-direction, b in y. Projection onto x-axis: $\quad(a, 0)$ (drop a line \perp from point to x-axis.) Distance from origin: $\sqrt{a^{2}+b^{2}}$

3D Coordinates

Variables: x, y (indep), z (dep)
Axes: x-axis $\perp y$-axis $\perp z$-axis
(right hand rule)
Coordinates of a point: $\quad(a, b, c)$
Go a units in x-dir, b in y, c in z. Projection onto $x y$-plane: $\quad(a, b, 0)$ (drop a line \perp from point to $x y$-plane) Distance from origin: $\sqrt{a^{2}+b^{2}+c^{2}}$

Coordinates, Now with More Dimensions....

2D Coordinates

Variables: x (indep), y (dep)
Axes: x-axis $\perp y$-axis

Coordinates of a point: $\quad(a, b)$
Go a units in x-direction, b in y.
Projection onto x-axis: $\quad(a, 0)$
(drop a line \perp from point to x-axis.)
Distance from origin: $\sqrt{a^{2}+b^{2}}$
First quadrant:
All points (a, b) with $a \geq 0, b \geq 0$.

3D Coordinates

Variables: x, y (indep), z (dep)
Axes: x-axis $\perp y$-axis $\perp z$-axis
(right hand rule)
Coordinates of a point: $\quad(a, b, c)$
Go a units in x-dir, b in y, c in z. Projection onto $x y$-plane: $\quad(a, b, 0)$ (drop a line \perp from point to $x y$-plane) Distance from origin: $\sqrt{a^{2}+b^{2}+c^{2}}$

Coordinates, Now with More Dimensions....

2D Coordinates

Variables: x (indep), y (dep)
Axes: x-axis $\perp y$-axis

Coordinates of a point: $\quad(a, b)$
Go a units in x-direction, b in y.
Projection onto x-axis: $\quad(a, 0)$
(drop a line \perp from point to x-axis.)
Distance from origin: $\sqrt{a^{2}+b^{2}}$
First quadrant:
All points (a, b) with $a \geq 0, b \geq 0$.

3D Coordinates

Variables: x, y (indep), z (dep)
Axes: x-axis $\perp y$-axis $\perp z$-axis
(right hand rule)
Coordinates of a point: $\quad(a, b, c)$
Go a units in x-dir, b in y, c in z. Projection onto $x y$-plane: $\quad(a, b, 0)$ (drop a line \perp from point to $x y$-plane) Distance from origin: $\sqrt{a^{2}+b^{2}+c^{2}}$ First octant:
All points (a, b, c) with $a, b, c \geq 0$

Continued Comparison

2D Equations

3D Equations
Lines:
$x=2$ defines

Continued Comparison

2D Equations

3D Equations
Lines:
$x=2$ defines a vertical line.

Continued Comparison

2D Equations

3D Equations

Lines:
$x=2$ defines a vertical line.
All points $(2, b)$ for any b

Continued Comparison

2D Equations

3D Equations

Lines:

$x=2$ defines a vertical line.
All points $(2, b)$ for any b
$y=3$ defines a horizontal line.
All points ($a, 3$) for any a

Continued Comparison

2D Equations

Lines:

$x=2$ defines a vertical line.
All points $(2, b)$ for any b
$y=3$ defines a horizontal line.
All points ($a, 3$) for any a

3D Equations

Planes:

$x=2$ is

Continued Comparison

2D Equations

Lines:

$x=2$ defines a vertical line.
All points $(2, b)$ for any b
$y=3$ defines a horizontal line.
All points ($a, 3$) for any a

3D Equations

Planes:

$x=2$ is a plane parallel to the $y z$-plane.
All points $(2, b, c)$ for any b, c.

Continued Comparison

2D Equations

Lines:

$x=2$ defines a vertical line.
All points $(2, b)$ for any b
$y=3$ defines a horizontal line.
All points ($a, 3$) for any a

3D Equations

Planes:

$x=2$ is a plane parallel to the $y z$-plane.
All points $(2, b, c)$ for any b, c.
$x=y$ defines a plane too.
All points (a, a, c) for any a, c.

Continued Comparison

2D Equations

Lines:

$x=2$ defines a vertical line.
All points $(2, b)$ for any b
$y=3$ defines a horizontal line.
All points ($a, 3$) for any a

Circles:

All points distance r from (h, k) :

$$
x^{2}+y^{2}=r^{2}
$$

3D Equations

Planes:

$x=2$ is a plane parallel to the $y z$-plane.
All points $(2, b, c)$ for any b, c.
$x=y$ defines a plane too.
All points (a, a, c) for any a, c.

Continued Comparison

2D Equations

Lines:

$x=2$ defines a vertical line.
All points $(2, b)$ for any b
$y=3$ defines a horizontal line.
All points ($a, 3$) for any a

Circles:

All points distance r from (h, k) :

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
(x-h)^{2}+(y-k)^{2}=r^{2}
\end{gathered}
$$

3D Equations

Planes:

$x=2$ is a plane parallel to the $y z$-plane.
All points $(2, b, c)$ for any b, c.
$x=y$ defines a plane too.
All points (a, a, c) for any a, c.

Continued Comparison

2D Equations

Lines:

$x=2$ defines a vertical line.
All points $(2, b)$ for any b
$y=3$ defines a horizontal line.
All points $(a, 3)$ for any a

Circles:

All points distance r from (h, k) :

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
(x-h)^{2}+(y-k)^{2}=r^{2}
\end{gathered}
$$

3D Equations

Planes:

$x=2$ is a plane parallel to the $y z$-plane.
All points $(2, b, c)$ for any b, c.
$x=y$ defines a plane too.
All points (a, a, c) for any a, c.

Spheres:

All points distance r from (h, k, ℓ) :

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=r^{2} \\
(x-h)^{2}+(y-k)^{2}+(z-\ell)^{2}=r^{2}
\end{gathered}
$$

Vectors

Definition: A vector is a quantity that has both magnitude and direction, often represented by an arrow. We'll use either \mathbf{v}, \vec{v}, or $\overrightarrow{\mathbf{v}}$.

Vectors

Definition: A vector is a quantity that has both magnitude and direction, often represented by an arrow. We'll use either \mathbf{v}, \vec{v}, or $\overrightarrow{\mathbf{v}}$.

- Think of them as a generalization of a single number.

Vectors

Definition: A vector is a quantity that has both magnitude and direction, often represented by an arrow. We'll use either \mathbf{v}, \vec{v}, or $\overrightarrow{\mathbf{v}}$.

- Think of them as a generalization of a single number.
- They do not have a fixed position.

Vectors

Definition: A vector is a quantity that has both magnitude and direction, often represented by an arrow. We'll use either \mathbf{v}, \vec{v}, or $\overrightarrow{\mathbf{v}}$.

- Think of them as a generalization of a single number.
- They do not have a fixed position.
- Can have any number of dimensions.

What can we do with vectors?

We can add vectors.

What can we do with vectors?

We can add vectors.
Place the tail of $\overrightarrow{\mathbf{v}}$ at the head of $\overrightarrow{\mathbf{u}}$.

What can we do with vectors?

We can add vectors.
Place the tail of $\overrightarrow{\mathbf{v}}$ at the head of $\overrightarrow{\mathbf{u}}$.
Define $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}$ to be the vector starting at the tail of $\overrightarrow{\mathbf{u}}$ and ending at the head of $\overrightarrow{\mathbf{v}}$.

What can we do with vectors?

We can add vectors.
Place the tail of $\overrightarrow{\mathbf{v}}$ at the head of $\overrightarrow{\mathbf{u}}$.
Define $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}$ to be the vector starting at the tail of $\overrightarrow{\mathbf{u}}$ and ending at the head of $\overrightarrow{\mathbf{v}}$.
Properties: $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{u}}$
$\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}$. (Parallelogram!)

What can we do with vectors?

We can add vectors.
Place the tail of $\overrightarrow{\mathbf{v}}$ at the head of $\overrightarrow{\mathbf{u}}$.
Define $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}$ to be the vector starting at the tail of $\overrightarrow{\mathbf{u}}$ and ending at the head of $\overrightarrow{\mathbf{v}}$.
Properties: $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{u}}$
$\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}$. (Parallelogram!)
We can stretch vectors
by a constant factor (a scalar).

What can we do with vectors?

We can add vectors.
Place the tail of $\overrightarrow{\mathbf{v}}$ at the head of $\overrightarrow{\mathbf{u}}$.
Define $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}$ to be the vector starting at the tail of $\overrightarrow{\mathbf{u}}$ and ending at the head of $\overrightarrow{\mathbf{v}}$.
Properties: $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{u}}$
$\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}$. (Parallelogram!)
We can stretch vectors
by a constant factor (a scalar).
Zero Properties:
$0 \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}} \quad$ and $\quad c \cdot \overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}}$

What can we do with vectors?

We can add vectors.
Place the tail of $\overrightarrow{\mathbf{v}}$ at the head of $\overrightarrow{\mathbf{u}}$.
Define $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}$ to be the vector starting at the tail of $\overrightarrow{\mathbf{u}}$ and ending at the head of $\overrightarrow{\mathbf{v}}$.
Properties: $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{u}}$
$\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}$. (Parallelogram!)
We can stretch vectors
by a constant factor (a scalar).
Zero Properties:
$0 \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}} \quad$ and $\quad c \cdot \overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}}$
So we can subtract vectors, because $\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{u}}+(-1) \overrightarrow{\mathbf{v}}$.

What can we do with vectors?

We can add vectors.
Place the tail of $\overrightarrow{\mathbf{v}}$ at the head of $\overrightarrow{\mathbf{u}}$.
Define $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}$ to be the vector starting at the tail of $\overrightarrow{\mathbf{u}}$ and ending at the head of $\overrightarrow{\mathbf{v}}$.
Properties: $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{u}}$
$\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}$. (Parallelogram!)
We can stretch vectors
by a constant factor (a scalar).
Zero Properties:
$0 \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}} \quad$ and $\quad c \cdot \overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}}$
So we can subtract vectors, because $\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{u}}+(-1) \overrightarrow{\mathbf{v}}$.
Distributive laws:
$(a+b) \cdot \overrightarrow{\mathbf{v}}=a \cdot \overrightarrow{\mathbf{v}}+b \cdot \overrightarrow{\mathbf{v}}$
$c \cdot(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})=c \cdot \overrightarrow{\mathbf{u}}+c \cdot \overrightarrow{\mathbf{v}}$

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- $\overrightarrow{\mathbf{u}}=\langle 1,4,3\rangle$,
- $\overrightarrow{\mathbf{v}}=\langle 0,-1,-3\rangle$,

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- $\overrightarrow{\mathbf{u}}=\langle 1,4,3\rangle$,
- $\overrightarrow{\mathbf{v}}=\langle 0,-1,-3\rangle$,

Three special vectors: $\overrightarrow{\mathbf{i}}=\langle 1,0,0\rangle, \overrightarrow{\mathbf{j}}=\langle 0,1,0\rangle, \overrightarrow{\mathbf{k}}=\langle 0,0,1\rangle$.

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- $\overrightarrow{\mathbf{u}}=\langle 1,4,3\rangle$,
- $\overrightarrow{\mathbf{v}}=\langle 0,-1,-3\rangle$,

Three special vectors: $\overrightarrow{\mathbf{i}}=\langle 1,0,0\rangle, \overrightarrow{\mathbf{j}}=\langle 0,1,0\rangle, \overrightarrow{\mathbf{k}}=\langle 0,0,1\rangle$.

- Alternate form: $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+3 \overrightarrow{\mathbf{k}}$. standard basis vectors

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- $\overrightarrow{\mathbf{u}}=\langle 1,4,3\rangle$,
- $\overrightarrow{\mathbf{v}}=\langle 0,-1,-3\rangle$,

Three special vectors: $\overrightarrow{\mathbf{i}}=\langle 1,0,0\rangle, \overrightarrow{\mathbf{j}}=\langle 0,1,0\rangle, \overrightarrow{\mathbf{k}}=\langle 0,0,1\rangle$.

- Alternate form: $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+3 \overrightarrow{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

- $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\langle 1+0,4+(-1), 3+(-3)\rangle=\langle 1,3,0\rangle$

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- $\overrightarrow{\mathbf{u}}=\langle 1,4,3\rangle$,
- $\overrightarrow{\mathbf{v}}=\langle 0,-1,-3\rangle$,

Three special vectors: $\overrightarrow{\mathbf{i}}=\langle 1,0,0\rangle, \overrightarrow{\mathbf{j}}=\langle 0,1,0\rangle, \overrightarrow{\mathbf{k}}=\langle 0,0,1\rangle$.

- Alternate form: $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+3 \overrightarrow{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

- $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\langle 1+0,4+(-1), 3+(-3)\rangle=\langle 1,3,0\rangle$
- $\pi \overrightarrow{\mathbf{u}}=\pi\langle 1,4,3\rangle=\langle\pi, 4 \pi, 3 \pi\rangle$

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- $\overrightarrow{\mathbf{u}}=\langle 1,4,3\rangle$,
- $\overrightarrow{\mathbf{v}}=\langle 0,-1,-3\rangle$,

Three special vectors: $\overrightarrow{\mathbf{i}}=\langle 1,0,0\rangle, \overrightarrow{\mathbf{j}}=\langle 0,1,0\rangle, \overrightarrow{\mathbf{k}}=\langle 0,0,1\rangle$.

- Alternate form: $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+3 \overrightarrow{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

- $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\langle 1+0,4+(-1), 3+(-3)\rangle=\langle 1,3,0\rangle$
- $\pi \overrightarrow{\mathbf{u}}=\pi\langle 1,4,3\rangle=\langle\pi, 4 \pi, 3 \pi\rangle$

Magnitude is a synonym for length, written $|\overrightarrow{\mathbf{v}}|$ or $\|\overrightarrow{\mathbf{v}}\|$.

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- $\overrightarrow{\mathbf{u}}=\langle 1,4,3\rangle$, then $|\overrightarrow{\mathbf{u}}|=\sqrt{1^{2}+4^{2}+3^{2}}=\sqrt{26}$.
- $\overrightarrow{\mathbf{v}}=\langle 0,-1,-3\rangle$,

Three special vectors: $\overrightarrow{\mathbf{i}}=\langle 1,0,0\rangle, \overrightarrow{\mathbf{j}}=\langle 0,1,0\rangle, \overrightarrow{\mathbf{k}}=\langle 0,0,1\rangle$.

- Alternate form: $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+3 \overrightarrow{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

- $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\langle 1+0,4+(-1), 3+(-3)\rangle=\langle 1,3,0\rangle$
- $\pi \overrightarrow{\mathbf{u}}=\pi\langle 1,4,3\rangle=\langle\pi, 4 \pi, 3 \pi\rangle$

Magnitude is a synonym for length, written $|\overrightarrow{\mathbf{v}}|$ or $\|\overrightarrow{\mathbf{v}}\|$.

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.

- $\overrightarrow{\mathbf{u}}=\langle 1,4,3\rangle$, then $|\overrightarrow{\mathbf{u}}|=\sqrt{1^{2}+4^{2}+3^{2}}=\sqrt{26}$.
- $\overrightarrow{\mathbf{v}}=\langle 0,-1,-3\rangle$, then $|\overrightarrow{\mathbf{v}}|=\sqrt{0^{2}+(-1)^{2}+(-3)^{2}}=\sqrt{10}$.

Three special vectors: $\overrightarrow{\mathbf{i}}=\langle 1,0,0\rangle, \overrightarrow{\mathbf{j}}=\langle 0,1,0\rangle, \overrightarrow{\mathbf{k}}=\langle 0,0,1\rangle$.

- Alternate form: $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+3 \overrightarrow{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

- $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\langle 1+0,4+(-1), 3+(-3)\rangle=\langle 1,3,0\rangle$
- $\pi \overrightarrow{\mathbf{u}}=\pi\langle 1,4,3\rangle=\langle\pi, 4 \pi, 3 \pi\rangle$

Magnitude is a synonym for length, written $|\overrightarrow{\mathbf{v}}|$ or $\|\overrightarrow{\mathbf{v}}\|$.

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.
$\rightarrow \overrightarrow{\mathbf{u}}=\langle 1,4,3\rangle$, then $|\overrightarrow{\mathbf{u}}|=\sqrt{1^{2}+4^{2}+3^{2}}=\sqrt{26}$.

- $\overrightarrow{\mathbf{v}}=\langle 0,-1,-3\rangle$, then $|\overrightarrow{\mathbf{v}}|=\sqrt{0^{2}+(-1)^{2}+(-3)^{2}}=\sqrt{10}$.

Three special vectors: $\overrightarrow{\mathbf{i}}=\langle 1,0,0\rangle, \overrightarrow{\mathbf{j}}=\langle 0,1,0\rangle, \overrightarrow{\mathbf{k}}=\langle 0,0,1\rangle$.

- Alternate form: $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+3 \overrightarrow{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

- $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\langle 1+0,4+(-1), 3+(-3)\rangle=\langle 1,3,0\rangle$
- $\pi \overrightarrow{\mathbf{u}}=\pi\langle 1,4,3\rangle=\langle\pi, 4 \pi, 3 \pi\rangle$

Magnitude is a synonym for length, written $|\overrightarrow{\mathbf{v}}|$ or $\|\overrightarrow{\mathbf{v}}\|$.
You may need to find the unit vector in the same direction as $\overrightarrow{\mathbf{u}}$.

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.
$\rightarrow \overrightarrow{\mathbf{u}}=\langle 1,4,3\rangle$, then $|\overrightarrow{\mathbf{u}}|=\sqrt{1^{2}+4^{2}+3^{2}}=\sqrt{26}$.

- $\overrightarrow{\mathbf{v}}=\langle 0,-1,-3\rangle$, then $|\overrightarrow{\mathbf{v}}|=\sqrt{0^{2}+(-1)^{2}+(-3)^{2}}=\sqrt{10}$.

Three special vectors: $\overrightarrow{\mathbf{i}}=\langle 1,0,0\rangle, \overrightarrow{\mathbf{j}}=\langle 0,1,0\rangle, \overrightarrow{\mathbf{k}}=\langle 0,0,1\rangle$.

- Alternate form: $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+3 \overrightarrow{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

- $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\langle 1+0,4+(-1), 3+(-3)\rangle=\langle 1,3,0\rangle$
- $\pi \overrightarrow{\mathbf{u}}=\pi\langle 1,4,3\rangle=\langle\pi, 4 \pi, 3 \pi\rangle$

Magnitude is a synonym for length, written $|\overrightarrow{\mathbf{v}}|$ or $\|\overrightarrow{\mathbf{v}}\|$.
You may need to find the unit vector in the same direction as $\overrightarrow{\mathbf{u}}$.

- Find the length of $\overrightarrow{\mathbf{u}}$ and divide by it!

Grasping the magnitude of the situation

To write a vector in coordinates, place the tail at the origin and find the coordinates of the head.
$\rightarrow \overrightarrow{\mathbf{u}}=\langle 1,4,3\rangle$, then $|\overrightarrow{\mathbf{u}}|=\sqrt{1^{2}+4^{2}+3^{2}}=\sqrt{26}$.

- $\overrightarrow{\mathbf{v}}=\langle 0,-1,-3\rangle$, then $|\overrightarrow{\mathbf{v}}|=\sqrt{0^{2}+(-1)^{2}+(-3)^{2}}=\sqrt{10}$.

Three special vectors: $\overrightarrow{\mathbf{i}}=\langle 1,0,0\rangle, \overrightarrow{\mathbf{j}}=\langle 0,1,0\rangle, \overrightarrow{\mathbf{k}}=\langle 0,0,1\rangle$.

- Alternate form: $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+3 \overrightarrow{\mathbf{k}}$. standard basis vectors

We add vectors componentwise. And multiply scalars componentwise.

- $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\langle 1+0,4+(-1), 3+(-3)\rangle=\langle 1,3,0\rangle$
- $\pi \overrightarrow{\mathbf{u}}=\pi\langle 1,4,3\rangle=\langle\pi, 4 \pi, 3 \pi\rangle$

Magnitude is a synonym for length, written $|\overrightarrow{\mathbf{v}}|$ or $\|\overrightarrow{\mathbf{v}}\|$.
You may need to find the unit vector in the same direction as $\overrightarrow{\mathbf{u}}$.

- Find the length of $\overrightarrow{\mathbf{u}}$ and divide by it!
- Example. Unit vector of $\langle 2,-1,-2\rangle$ is

Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?

Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?

Answer: The forces must be in equilibrium.

Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?

Answer: The forces must be in equilibrium. This means that the sum of all the forces equals $\overrightarrow{\mathbf{0}}$.

Vectors are the best way to understand Physics

Example. A 100 lb weight
hangs from the ceiling.
How much force is held
by each rope?
Answer: The forces must be in equilibrium. This means that the sum of all the forces equals $\overrightarrow{\mathbf{0}}$.

- Set up a coordinate system centered at the rope meeting place.

Vectors are the best way to understand Physics

Example. A 100 lb weight
hangs from the ceiling.
How much force is held
by each rope?
Answer: The forces must be in equilibrium.
This means that the sum of all the forces equals $\overrightarrow{\mathbf{0}}$.

- Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.

Vectors are the best way to understand Physics

Example. A 100 lb weight
hangs from the ceiling.
How much force is held
by each rope?
Answer: The forces must be in equilibrium.
This means that the sum of all the forces equals $\overrightarrow{\mathbf{0}}$.

- Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
- The weight down gives $\overrightarrow{\mathbf{W}}=\langle 0,-100\rangle$.

Vectors are the best way to understand Physics

Example. A 100 lb weight
hangs from the ceiling.
How much force is held
by each rope?
Answer: The forces must be in equilibrium.
This means that the sum of all the forces equals $\overrightarrow{\mathbf{0}}$.

- Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
- The weight down gives $\overrightarrow{\mathbf{W}}=\langle 0,-100\rangle$.
- The first force $\overrightarrow{\mathbf{F}}_{1}=F_{1} \backslash$ \square

Vectors are the best way to understand Physics

Example. A 100 lb weight
hangs from the ceiling.
How much force is held
by each rope?
Answer: The forces must be in equilibrium.
This means that the sum of all the forces equals $\overrightarrow{\mathbf{0}}$.

- Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
- The weight down gives $\overrightarrow{\mathbf{W}}=\langle 0,-100\rangle$.
- The first force $\overrightarrow{\mathbf{F}}_{1}=F_{1}\langle\quad\rangle$ (magnitude \cdot direction)

Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?

Answer: The forces must be in equilibrium.
This means that the sum of all the forces equals $\overrightarrow{\mathbf{0}}$.

- Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
- The weight down gives $\overrightarrow{\mathbf{W}}=\langle 0,-100\rangle$.
- The first force $\overrightarrow{\mathbf{F}}_{1}=F_{1}\langle\quad\rangle$ (magnitude \cdot direction)
- The second force $\overrightarrow{\mathbf{F}}_{2}=F_{2}\langle$ \square

Vectors are the best way to understand Physics

Example. A 100 lb weight
hangs from the ceiling.
How much force is held
by each rope?
Answer: The forces must be in equilibrium.
This means that the sum of all the forces equals $\overrightarrow{\mathbf{0}}$.

- Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
- The weight down gives $\overrightarrow{\mathbf{W}}=\langle 0,-100\rangle$.
- The first force $\overrightarrow{\mathbf{F}}_{1}=F_{1}\langle\quad\rangle$ (magnitude \cdot direction)
- The second force $\overrightarrow{\mathbf{F}}_{2}=F_{2}\langle$ \square
- Use equilibrium to get a system of equations, solve.

Vectors are the best way to understand Physics

Example. A 100 lb weight
hangs from the ceiling.
How much force is held
by each rope?
Answer: The forces must be in equilibrium.
This means that the sum of all the forces equals $\overrightarrow{\mathbf{0}}$.

- Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
- The weight down gives $\overrightarrow{\mathbf{W}}=\langle 0,-100\rangle$.
- The first force $\overrightarrow{\mathbf{F}}_{1}=F_{1}\langle\quad\rangle$ (magnitude \cdot direction)
- The second force $\overrightarrow{\mathbf{F}}_{2}=F_{2}\langle$

- Use equilibrium to get a system of equations, solve.
$-\cos 50 F_{1}+\cos 32 F_{2}=0$

Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?

Answer: The forces must be in equilibrium.
This means that the sum of all the forces equals $\overrightarrow{\mathbf{0}}$.

- Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
- The weight down gives $\overrightarrow{\mathbf{W}}=\langle 0,-100\rangle$.
- The first force $\overrightarrow{\mathbf{F}}_{1}=F_{1}\langle\quad\rangle$ (magnitude \cdot direction)
- The second force $\overrightarrow{\mathbf{F}}_{2}=F_{2}\langle$

- Use equilibrium to get a system of equations, solve.
$-\cos 50 F_{1}+\cos 32 F_{2}=0$ and $\sin 50 F_{1}+\sin 32 F_{2}-100=0$

Vectors are the best way to understand Physics

Example. A 100 lb weight hangs from the ceiling. How much force is held by each rope?

Answer: The forces must be in equilibrium.
This means that the sum of all the forces equals $\overrightarrow{\mathbf{0}}$.

- Set up a coordinate system centered at the rope meeting place.
- Find the force vector on each rope.
- The weight down gives $\overrightarrow{\mathbf{W}}=\langle 0,-100\rangle$.
- The first force $\overrightarrow{\mathbf{F}}_{1}=F_{1}\langle\quad\rangle$ (magnitude \cdot direction)
- The second force $\overrightarrow{\mathbf{F}}_{2}=F_{2}\langle$

- Use equilibrium to get a system of equations, solve.
$-\cos 50 F_{1}+\cos 32 F_{2}=0$ and $\sin 50 F_{1}+\sin 32 F_{2}-100=0$
Solving gives $F_{1} \approx 85 \mathrm{lb}$ and $F_{2} \approx 65 \mathrm{lb}$.

