What else can we do with vectors?

How to multiply two vectors
$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$ In any dimension: dot product. Answer is a number. Easy.
$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \ln 3$ dimensions: cross product. Answer is a vector. Memorize.
Dot product
Let $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be vectors of the same dimension.
If $\overrightarrow{\mathbf{a}}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\overrightarrow{\mathbf{b}}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.

Big deal:

1. $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}=$

More Properties:

$$
\begin{aligned}
& \text { 2. } \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}} \\
& \text { 3. } \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} \\
& \text { 4. }(c \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{b}}=c(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \\
& \text { 5. } \overrightarrow{\mathbf{0}} \cdot \overrightarrow{\mathbf{a}}=
\end{aligned}
$$

Dot products and angles

Key idea: Use the dot product to find the angle between vectors.

$$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta \quad \text { OR } \quad \cos \theta=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}
$$

Why? Law of cosines!! $\quad|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}-2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$

Example. What is the angle between $\overrightarrow{\mathbf{a}}=\langle 2,2,-1\rangle$ and $\overrightarrow{\mathbf{b}}=\langle 5,-3,2\rangle$? Answer:

$$
\cos ^{-1}\left(\frac{2}{3 \sqrt{38}}\right) \approx 1.46 \mathrm{rad} \approx 84^{\circ}
$$

Question: What happens when two vectors are orthogonal?
Key idea: Two vectors are orthogonal if and only if \qquad .

Projecting

Dot products let you project one vector onto another.

Answers: "How far does vector $\overrightarrow{\mathbf{b}}$ go in vector $\overrightarrow{\mathbf{a}}$'s direction?"
First: Calculate the length of the projection.
Draw the triangle.
We see $\frac{\left|\operatorname{proj}_{\vec{a}} \overrightarrow{\mathbf{b}}\right|}{|\overrightarrow{\mathbf{b}}|}=\cos \theta=$ \qquad ,
So its length is $\left|\operatorname{proj}_{\mathbf{a}} \overrightarrow{\mathbf{b}}\right|=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|}$.
Next: What is the direction of the projection?
The unit vector in $\overrightarrow{\mathbf{a}}$'s direction is \qquad .
Therefore

$$
\operatorname{proj}_{\overrightarrow{\mathbf{a}}} \overrightarrow{\mathbf{b}}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|} \cdot \frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|^{2}} \overrightarrow{\mathbf{a}}
$$

Cross Products

3D Only!!!!

Given vectors $\overrightarrow{\mathbf{a}}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\overrightarrow{\mathbf{b}}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, the cross product:

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

is orthogonal to both $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ and has length

$$
|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta .
$$

This is equal to the area of the parallelogram determined by $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$.

Use the right hand rule to determine the direction of $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$.

- Use your right hand to swing from $\overrightarrow{\mathbf{a}}$ to $\overrightarrow{\mathbf{b}}$. Your thumb points in the direction of $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$.

Remembering $\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle$

Use the determinant of a 3×3 matrix.

$$
\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Example. Find $\langle 2,3,2\rangle \times\langle 1,0,6\rangle$, and show that it is \perp to each.

Properties of x

- $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$
- $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$
- $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}$
$\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\boldsymbol{c}}\left\langle a_{2}\left(b_{3}+c_{3}\right)-a_{3}\left(b_{2}+c_{2}\right), a_{3}\left(b_{1}+c_{1}\right)-a_{1}\left(b_{3}+c_{3}\right), a_{1}\left(b_{2}+c_{2}\right)-a_{2}\left(b_{1}+c_{1}\right)\right\rangle$
- $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{c}}$
$-\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}} \quad \begin{gathered}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle+ \\ \left\langle a_{2} c_{3}-a_{3} c_{2}, a_{3} c_{1}-a_{1} c_{3}, a_{1} c_{2}-a_{2} c_{1}\right\rangle\end{gathered}$ $=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

The quantity $|\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})|$ is called the scalar triple product, and calculates the volume of the parallelepiped determined by the vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$, and $\overrightarrow{\mathbf{c}}$.

Physics

Application: Work

If a force applied in a direction (vector $\overrightarrow{\mathbf{F}}$)
causes a displacement in a direction (vector $\overrightarrow{\mathbf{D}}$), then the work exerted is $W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{D}}$.

Application: Torque

If a force applied in a direction (vector $\overrightarrow{\mathbf{F}}$)
is applied to a lever, where the radius vector $\overrightarrow{\mathbf{r}}$ is
from the pivot to the place where the force is applied,
then a turning force called torque $\vec{\tau}$ is generated.
A formula is calculated by: $\vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$

