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How to multiply two vectors
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Dot product
Let a and b be vectors of the same dimension.

|f5= <31,32,33> and B: <b1’b2’ b3>'
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Dot product
Let a and b be vectors of the same dimension.
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What else can we do with vectors?

How to multiply two vectors
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u x v In 3 dimensions: cross product. Answer is a vector. Memorize.

Dot product
Let & and b be vectors of the same dimension.
If @ = (a1, a0, a3) and b = (b1, by, b3), then @-b = a1 by + asbhy + asbs.

Big deal: More Properties:
‘b=b-
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ml

l.a-a= 2.
3.

Q| Q)
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Dot product
Let & and b be vectors of the same dimension.
If @ = (a1, a0, a3) and b = (b1, by, b3), then @-b = a1 by + asbhy + asbs.

More Properties:

Big deal

1.a-a= 2.3-b=b-a
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4. (c@)-b=c(a-b)
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What else can we do with vectors?

How to multiply two vectors
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-V In any dimension: dot product. Answer is a number. Easy.

u x v In 3 dimensions: cross product. Answer is a vector. Memorize.

Dot product
Let a and b be vectors of the same dimension.

If @ = (a1, a0, a3) and b = (b1, by, b3), then @-b = a1 by + asbhy + asbs.

Big deal: More Properties:

1.a-a= 2.a-b=b-a
3.3-(b+€) =a-b+a-c
4. (c@)-b=c(a-b)
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a-b=|al|b| cos§ OR cosf =——=.

al [b|

Why?  Law of cosines!! |a — 5‘2 = |a]* + ‘5‘2 —2|a] ‘l;‘ cos
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Dot products and angles

Key idea: Use the dot product to find the angle between vectors.

—

R a-b
a-b=a]|b| cos# OR cosé?:i_,.
|al [b]

Why?  Law of cosines!! |a — 5‘2 = |a]* + ‘5‘2 —2|a]| |b| cos®

Example. What is the angle between & = (2,2, —1) and b = (5, —3,2)?
Answer:

cos! (ﬁ) ~ 1.46 rad ~ 84°.

Question: What happens when two vectors are orthogonal?

Key idea: Two vectors are orthogonal if and only if
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Dot products let you project one vector onto another.
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We see % = cosf = _
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So its length is |pr015b‘

Next: What is the direction of the projection?

The unit vector in a's direction is
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Projecting

Dot products let you project one vector onto another.
Answers: “How far does vector b go in vector a's direction?”

First: Calculate the length of the projection.

Draw the triangle.

|P Ja | _
We see 5] = cosf = ,

—

So its length is |pr015b‘ "’?
Next: What is the direction of the projection?

The unit vector in a's direction is

Therefore . .
.- a-b a a-b_
projzb = —- - —= = —5a

jal  a]

o
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Cross Products 3D Only!!!!

Given vectors @ = (aj, a», a3) and b= (b1, by, b3), the cross product:
ax b= (aybs — asby , asby — arbs , a1by — arby)

is orthogonal to both a and band has length
|@ x b| = |a] |b] sin 6.

This is equal to the area of the parallelogram determined by a and b.

Use the right hand rule to determine the direction of a x b.

» Use your right hand to swing from & to b.
Your thumb points in the direction of @ x b.

(What do you get?)
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Remembering  (axbs — asbp, asby — a1bs, a1by — axb1)

Use the determinant of a 3 X 3 matrix.

i j kK
dy d2 as
by by b3

Example. Find (2,3,2) x (1,0,6), and show that it is L to each.

29
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Properties of x

» axa=0

» axb=-bxa
» ax(b+¢)=ax
> a-(bx¢€)=(ax
» ax(bx¢)=(a-
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Proofs by component manipulation
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Properties of x
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Proofs by component manipulation
ax(b+¢)=
= (a1, a,a3) x ((b1, b2, b3) + (c1, 2, c3))
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Properties of x

Proofs by component manipulation

»axa=0 ax(b+c)=

> axb=-bxa = (a1, @, a3) x ({b1, b2, b3) + (c1, &2, 3))
> é’x(_‘—l—E):é’x 5+5X6 = (a1, a,a3) X (b1 + c1, bo + &, bs + c3)
» a-(bxc)=(@xb) €

» ax(bx€) =(a-c)b—(a-b)c
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Properties of x

Proofs by
»axa=0 ax (b+7c)
» axb=-bxa = (a1, a2, a3
b ax(b+&) —axbraxe —wad
I Lo (a2(b3+c3) —az(b2+c2)
» a-(bxc)=(axb)-
» ax(bx€) =(a-c)b—(a-b)c

30

component manipulation
> X (<b15 b, b3> + <C17 C2, C3>)
) X (b1 4+ c1, b0 + &, bs + c3)

ya3(bi+cr) —ai(b3+c3), ar(ba+co) —az(by+ci1))
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Properties of x

vVvyYyyvyy

Proofs by component manipulation

axa=0 ax(b+¢)=

axb=-bxa = (a1, a2, a3) X ((b1, b2, b3) + (c1, 2, 3))

- o S 2 5 o = (a1, @, a3) X (b1 + c1, o, b3+ ¢

a><( +c):axb+axc (a1, as,a3) X (by + c1, by + &, b3 + c3)

o — _ R — (az(b3+c3)—az(ba+c), az(by+c1)—a1(bz+c3), a1 (ba+c2) —ax(by +c1))
a (b X C) = (a X b) - C =(axbs—asby, asb1 —aibs, aiby — a2 b1 )+
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Properties of x

30

Proofs by component manipulation

> axa=0 ax(b+¢)=

» axb=_-bxa = (a1, @, a3) x ({b1, b2, b3) + (c1, &2, 3))

> ax (“_’_E) — 3x B‘+5X6 = (a1, a2, a3) X (b1 + c1, b2 + &2, b3 + c3)
oo Lo (a2(b3+c3)—az(ba+2), a3(br+c1) —a1(b3+c3), ar(ba+c2) —azx(bi+ar))

> a- (b_“>< C) = (a x bl c . =(axbs—asby, asb1 —aibs, aiby — a2 b1 )+

> ax (b X E) = (5 E)b — (5 b)(_:' <a2c3—a3cZ, azc)—aics, 3162—8261>



Cross products — §10.4 30

Properties of x

vVvyYyyvyy

Proofs by component manipulation

axa=0 ax(b+¢)=

axb=-bxa = (a1, a2, a3) X ((b1, b2, b3) + (c1, 2, 3))

- o S 2 5 o = (a1, @, a3) X (b1 + c1, o, b3+ ¢

a><( +c):axb+axc (a1, as,a3) X (by + c1, by + &, b3 + c3)

o — _ R — (az(b3+c3)—az(ba+c), az(by+c1)—a1(bz+c3), a1 (ba+c2) —ax(by +c1))
a (b X C) = (a X b) - C =(axbs—asby, asb1 —aibs, aiby — a2 b1 )+

ax (B X E) = (56)5_ (5 E)E (a3 —a3c, a3c1—ai1cs, a1 —axc)

=axb+axc
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Properties of x
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Proofs by component manipulation

axa=0 ax(b+¢)=

axb=-bxa = (a1, a2, a3) X ((b1, b2, b3) + (c1, 2, 3))

5> R = S B, 2= = (a1, a2,a3) x (b , ,b

a><( +c):a><b+a><c (a1, a2, a3) X (b1 4+ c1, b2 + &2, b3 + c3)
IR . N — (a2(b3+c3) —az(ba+c2), az(by+c1) —ai(bs+c3), a1(bp+c2) —az(by +c1))
a (b X C) = (a X b) - C =(axbs—asby, asb1 —aibs, aiby — a2 b1 )+

dx(bx¢)=(a-c)b—(a-b)¢ (2203 — a3Ca, ascL — ar.Cs, a1C2 — a2¢1)

=axb+axc

The quantity |- (b x €)| is called the scalar triple product, and
calculates the volume of the parallelepiped determined by the
vectors a, b, and C.
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Physics

Application: Work

If a force applied in a direction (vector F)
causes a displacement in a direction (vector 5)
then the work exerted is W = F - D.
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Physics

Application: Work

If a force applied in a direction (vector F)
causes a displacement in a direction (vector 5)
then the work exerted is W = F - D.

Application: Torque

If a force applied in a direction (vector F)

is applied to a lever, where the radius vector r is

from the pivot to the place where the force is applied,
then a turning force called torque 7 is generated.

A formula is calculated by: #=Fx F
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