Lines, Planes, and Automobiles!

Lines in 2D Coordinates
Two common formats:

Lines, Planes, and Automobiles!

Lines in 2D Coordinates
Two common formats:
$y=m x+b$ (slope-intercept) or
$\left(y-y_{0}\right)=m\left(x-x_{0}\right)$ (pt-slope)
Given a point and a direction, you know the equation of the line.

Lines, Planes, and Automobiles!

Lines in 2D Coordinates

Two common formats:
$y=m x+b$ (slope-intercept) or
$\left(y-y_{0}\right)=m\left(x-x_{0}\right)$ (pt-slope)
Given a point and a direction, you know the equation of the line.

Lines in 3D Coordinates

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

Lines, Planes, and Automobiles!

Lines in 2D Coordinates

Two common formats:
$y=m x+b$ (slope-intercept) or
$\left(y-y_{0}\right)=m\left(x-x_{0}\right)$ (pt-slope)
Given a point and a direction, you know the equation of the line.

$$
\langle x, y\rangle=\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle
$$

Lines in 3D Coordinates

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

Each t gives a point (x, y, z) on L.

Lines, Planes, and Automobiles!

Lines in 2D Coordinates

Two common formats:
$y=m x+b$ (slope-intercept) or
$\left(y-y_{0}\right)=m\left(x-x_{0}\right)$ (pt-slope)
Given a point and a direction, you know the equation of the line.

$$
\langle x, y\rangle=\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle
$$

Lines in 3D Coordinates

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

Each t gives a point (x, y, z) on L. Reading componentwise, same as:

$$
\left\{\begin{array}{l}
x(t)=x_{0}+a t \\
y(t)=y_{0}+b t \\
z(t)=z_{0}+c t
\end{array}\right\}
$$

Lines, Planes, and Automobiles!

Lines in 2D Coordinates

Two common formats:
$y=m x+b$ (slope-intercept) or
$\left(y-y_{0}\right)=m\left(x-x_{0}\right)$ (pt-slope)
Given a point and a direction, you know the equation of the line.

$$
\langle x, y\rangle=\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle
$$

Lines in 3D Coordinates

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

Each t gives a point (x, y, z) on L. Reading componentwise, same as:

$$
\left\{\begin{array}{l}
x(t)=x_{0}+a t \\
y(t)=y_{0}+b t \\
z(t)=z_{0}+c t
\end{array}\right\}
$$

Key idea: Read off direction vector $\overrightarrow{\mathbf{v}}$ from coeffs of t.

Lines, Planes, and Automobiles!

Lines in 2D Coordinates

Two common formats:
$y=m x+b$ (slope-intercept) or
$\left(y-y_{0}\right)=m\left(x-x_{0}\right)$ (pt-slope)
Given a point and a direction, you know the equation of the line.

$$
\langle x, y\rangle=\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle
$$

Lines in 3D Coordinates

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

Each t gives a point (x, y, z) on L. Reading componentwise, same as:

$$
\left\{\begin{array}{l}
x(t)=x_{0}+a t \\
y(t)=y_{0}+b t \\
z(t)=z_{0}+c t
\end{array}\right\}
$$

Key idea: Read off direction vector $\overrightarrow{\mathbf{v}}$ from coeffs of t.

Lines, Planes, and Automobiles!

Lines in 2D Coordinates
Two common formats:
$y=m x+b$ (slope-intercept) or
$\left(y-y_{0}\right)=m\left(x-x_{0}\right)$ (pt-slope)
Given a point and a direction, you know the equation of the line.

$$
\langle x, y\rangle=\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle
$$

Two Lines

In three dimensions, two lines can

- be parallel
- intersect
- be skew

Lines in 3D Coordinates

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

Each t gives a point (x, y, z) on L. Reading componentwise, same as:

$$
\left\{\begin{array}{l}
x(t)=x_{0}+a t \\
y(t)=y_{0}+b t \\
z(t)=z_{0}+c t
\end{array}\right\}
$$

Key idea: Read off direction vector $\overrightarrow{\mathbf{v}}$ from coeffs of t.

1D Examples

Example. Find the equation of the line that passes through $A=(2,4,-3)$ and $B=(3,-1,1)$.

1D Examples

Example. Find the equation of the line that passes through $A=(2,4,-3)$ and $B=(3,-1,1)$.
Answer: To find the equation of a line, we need

- One Point.

1D Examples

Example. Find the equation of the line that passes through $A=(2,4,-3)$ and $B=(3,-1,1)$.
Answer: To find the equation of a line, we need

- One Point.
- One Direction.

1D Examples

Example. Find the equation of the line that passes through $A=(2,4,-3)$ and $B=(3,-1,1)$.
Answer: To find the equation of a line, we need

- One Point.
- One Direction.

Example. Where does this line pass through the $x y$-plane?

1D Examples

Example. Find the equation of the line that passes through $A=(2,4,-3)$ and $B=(3,-1,1)$.
Answer: To find the equation of a line, we need

- One Point.
- One Direction.

Example. Where does this line pass through the $x y$-plane?
Answer: In other words,

Never the twain shall meet

Example. Show that the following lines are skew.
Romeo : $\langle 1+t,-2+3 t, 4-t\rangle$
Juliet: $\langle 2 s, 3+s,-3+4 s\rangle$

Never the twain shall meet

Example. Show that the following lines are skew.

$$
\begin{gathered}
\text { Romeo : }\langle 1+t,-2+3 t, 4-t\rangle \\
\text { Juliet : }\langle 2 s, 3+s,-3+4 s\rangle
\end{gathered}
$$

Answer: We will show:

- They are not parallel.
- They do not intersect.

Never the twain shall meet

Example. Show that the following lines are skew.

$$
\begin{gathered}
\text { Romeo : }\langle 1+t,-2+3 t, 4-t\rangle \\
\text { Juliet : }\langle 2 s, 3+s,-3+4 s\rangle
\end{gathered}
$$

Answer: We will show:

- They are not parallel. (They would have the same \qquad
- They do not intersect.

Never the twain shall meet

Example. Show that the following lines are skew.

$$
\begin{gathered}
\text { Romeo : }\langle 1+t,-2+3 t, 4-t\rangle \\
\text { Juliet : }\langle 2 s, 3+s,-3+4 s\rangle
\end{gathered}
$$

Answer: We will show:

- They are not parallel. (They would have the same \qquad
- They do not intersect. (There would be a point \qquad

Equations of planes

Question:

Does a plane
have a direction?

Equations of planes

Question:

Does a plane
have a direction?

There is one vector to the plane, the $\overrightarrow{\mathrm{n}}$.

Equations of planes

Question:
 Does a plane
 have a direction?

There is one vector to the plane, the $\overrightarrow{\mathbf{n}}$.

Note: $\overrightarrow{\boldsymbol{n}}$ defines infinitely many planes. We also need a point.

Equations of planes

Question:

Does a plane
have a direction?
There is one vector to the plane, the \qquad \vec{n}.

Note: $\overrightarrow{\boldsymbol{n}}$ defines infinitely many planes. We also need a point.
A plane is defined by a normal vector $\overrightarrow{\mathbf{n}}$ and a point $\overrightarrow{\mathbf{r}}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$. For any point $\overrightarrow{\mathbf{r}}$ on the plane, $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}$ is perpendicular to $\overrightarrow{\mathbf{n}}$.

Equations of planes

Question:
Does a plane
have a direction?
There is one vector to the plane, the \qquad \vec{n}.

Note: $\overrightarrow{\boldsymbol{n}}$ defines infinitely many planes. We also need a point.
A plane is defined by a normal vector $\overrightarrow{\mathbf{n}}$ and a point $\overrightarrow{\mathbf{r}}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$. For any point $\overrightarrow{\mathbf{r}}$ on the plane, $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}$ is perpendicular to $\overrightarrow{\mathbf{n}}$.
So the equation of a plane is

$$
\overrightarrow{\mathbf{n}} \cdot\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right)=0 .
$$

Equations of planes

Question:

Does a plane

have a direction?
There is one vector to the plane, the \qquad \vec{n}.

Note: $\overrightarrow{\boldsymbol{n}}$ defines infinitely many planes. We also need a point.
A plane is defined by a normal vector $\overrightarrow{\mathbf{n}}$ and a point $\overrightarrow{\mathbf{r}}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$. For any point $\overrightarrow{\mathbf{r}}$ on the plane, $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}$ is perpendicular to $\overrightarrow{\mathbf{n}}$.
So the equation of a plane is

$$
\begin{gathered}
\overrightarrow{\mathbf{n}} \cdot\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right)=0 . \\
\langle a, b, c\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0 \\
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \\
a x+b y+c z=d
\end{gathered}
$$

Equations of planes

Question:
Does a plane
have a direction?
There is one vector to the plane, the \vec{n}.
Note: $\overrightarrow{\boldsymbol{n}}$ defines infinitely many planes. We also need a point.
A plane is defined by a normal vector $\overrightarrow{\mathbf{n}}$ and a point $\overrightarrow{\mathbf{r}}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$. For any point $\overrightarrow{\mathbf{r}}$ on the plane, $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}$ is perpendicular to $\overrightarrow{\mathbf{n}}$.
So the equation of a plane is

Plane Examples

Example. What is the angle between the planes

$$
x+y+z=1 \text { and } x-2 y+3 z=1 ?
$$

Plane Examples

Example. What is the angle between the planes

$$
x+y+z=1 \text { and } x-2 y+3 z=1 ?
$$

Answer: When we need to find an angle, use

Plane Examples

Example. What is the angle between the planes

$$
x+y+z=1 \text { and } x-2 y+3 z=1 ?
$$

Answer: When we need to find an angle, use

$$
\theta=\cos ^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}
$$

Plane Examples

Example. What is the angle between the planes

$$
x+y+z=1 \text { and } x-2 y+3 z=1 ?
$$

Answer: When we need to find an angle, use \qquad .

$$
\theta=\cos ^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}
$$

Example. What is the equation of the intersection line?

Plane Examples

Example. What is the angle between the planes

$$
x+y+z=1 \text { and } x-2 y+3 z=1 ?
$$

Answer: When we need to find an angle, use \qquad .

$$
\theta=\cos ^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}
$$

Example. What is the equation of the intersection line?
Answer: For the equation of a line, we need

Plane Examples

Example. Find the distance from $(1,0,-1)$ to $2 x+3 y-5 z+10=0$.

Plane Examples

Example. Find the distance from $(1,0,-1)$ to $2 x+3 y-5 z+10=0$. Answer: The normal vector to the plane is \qquad

Plane Examples

Example. Find the distance from $(1,0,-1)$ to $2 x+3 y-5 z+10=0$. Answer: The normal vector to the plane is so the shortest distance from $P_{0}=(1,0,-1 \overline{) \text { to the plane }}$ is along the line $(1,0,-1)+t(2,3,-5)$.

Plane Examples

Example. Find the distance from $(1,0,-1)$ to $2 x+3 y-5 z+10=0$. Answer: The normal vector to the plane is so the shortest distance from $P_{0}=(1,0,-1)$ to the plane is along the line $(1,0,-1)+t(2,3,-5)$. Where does this hit the plane?

Plane Examples

Example. Find the distance from $(1,0,-1)$ to $2 x+3 y-5 z+10=0$. Answer: The normal vector to the plane is so the shortest distance from $P_{0}=(1,0,-1)$ to the plane is along the line $(1,0,-1)+t(2,3,-5)$. Where does this hit the plane?

Use the equation of the line and the plane: $2 x+3 y-5 z+10=0 \rightsquigarrow 2(1+2 t)+3(0+3 t)-5(-1-5 t)+10=0$

Plane Examples

Example. Find the distance from $(1,0,-1)$ to $2 x+3 y-5 z+10=0$. Answer: The normal vector to the plane is so the shortest distance from $P_{0}=(1,0,-1)$ to the plane is along the line $(1,0,-1)+t(2,3,-5)$. Where does this hit the plane?
Use the equation of the line and the plane: $2 x+3 y-5 z+10=0 \rightsquigarrow 2(1+2 t)+3(0+3 t)-5(-1-5 t)+10=0$
Simplifying, the point P_{1} where the line hits the plane is when $t=\frac{-17}{38}$.

Plane Examples

Example. Find the distance from $(1,0,-1)$ to $2 x+3 y-5 z+10=0$. Answer: The normal vector to the plane is so the shortest distance from $P_{0}=(1,0,-1)$ to the plane is along the line $(1,0,-1)+t(2,3,-5)$. Where does this hit the plane?
Use the equation of the line and the plane: $2 x+3 y-5 z+10=0 \rightsquigarrow 2(1+2 t)+3(0+3 t)-5(-1-5 t)+10=0$ Simplifying, the point P_{1} where the line hits the plane is when $t=\frac{-17}{38}$. $\vec{P}_{1}-\vec{P}_{0}=\frac{-17}{38}\langle 2,3,-5\rangle$, so

Plane Examples

Example. Find the distance from $(1,0,-1)$ to $2 x+3 y-5 z+10=0$. Answer: The normal vector to the plane is so the shortest distance from $P_{0}=(1,0,-1)$ to the plane is along the line $(1,0,-1)+t(2,3,-5)$. Where does this hit the plane?
Use the equation of the line and the plane: $2 x+3 y-5 z+10=0 \rightsquigarrow 2(1+2 t)+3(0+3 t)-5(-1-5 t)+10=0$
Simplifying, the point P_{1} where the line hits the plane is when $t=\frac{-17}{38}$.

$$
\vec{P}_{1}-\vec{P}_{0}=\frac{-17}{38}\langle 2,3,-5\rangle, \text { so }
$$

$$
\left|\vec{P}_{1}-\vec{P}_{0}\right|=\frac{17}{38} \sqrt{2^{2}+3^{2}+(-5)^{2}}=\frac{17}{\sqrt{38}} .
$$

