Drawing simple 3-D surfaces

Definition: Cylinders are surfaces where all slices are the same.
Example. $z=x^{2} . \longleftarrow y$ is NOT in this equation; y can be anything. For any choice of $y=k$ (parallel to ____-plane), the surface looks like a parabola opening toward the positive z-axis.
It is a parabolic cylinder.

Example. $y^{2}+z^{2}=1 . \longleftarrow x$ is not in this equation.
For any choice of $x=k$, the surface looks like a unit circle.

Quadric surfaces

Definition: A quadric surface is defined by an equation of the form:

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+G x+H y+I z+J=0
$$

They are the analog of conic sections in two dimensions.
Through rotation or translation, we need only consider two types:

$$
A x^{2}+B y^{2}+C z^{2}+J=0 \text { and } A x^{2}+B y^{2}+I z=0
$$

Strategy: Take slices in each coordinate direction,
piece the slices together to understand the surface. $\left\{\begin{array}{l}x=\text { constant } k \\ y=\text { constant } k \\ z=\text { constant } k\end{array}\right.$
Example. $x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$.
When $z=0, x^{2}+\frac{y^{2}}{9}=1$ is an ellipse. $\quad(-2 \leq k \leq 2)$
When $z=k, x^{2}+\frac{y^{2}}{9}=1-\frac{k^{2}}{4}$ is an ellipse when $1-\frac{k^{2}}{4} \geq 0$.
When $x=k, \frac{y^{2}}{9}+\frac{z^{2}}{4}=1-k^{2}$ is an ellipse
When $y=k, x^{2}+\frac{z^{2}}{4}=1-\frac{k^{2}}{9}$ is an ellipse
Every slice is an ellipse \rightsquigarrow surface is an ellipsoid.

Example. $z=y^{2}-x^{2}$

Slices $\quad x=k \quad y=k \quad z=k$
Eqn Format $\quad z=y^{2}-k^{2} \quad z=k^{2}-x^{2} \quad k=y^{2}-x^{2}$
Conic section
Sketches

Assemble together:

Need to know

- There are six different families of quadric surfaces.

Ellipsoid (Sphere)

$$
+\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Elliptic paraboloid

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

Hyperbolic paraboloid

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

Cone

$$
+\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=0
$$

Hyperboloid of one sheet

$$
+\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

Hyperboloid of two sheets

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

- Matching equations to surfaces.
- More variety than conic sections but same building blocks.
- How to find slices, assemble to a rough sketch.

Online Resources:
https://www. youtube.com/watch?v=LBiiOEiD3Yk
http://tutorial.math.lamar.edu/Classes/CalcIII/QuadricSurfaces.aspx

