Definition: **Cylinders** are surfaces where all slices are the same.

Definition: **Cylinders** are surfaces where all slices are the same.

Example. $z = x^2$.

Definition: **Cylinders** are surfaces where all slices are the same.

Example. $z = x^2$. $\leftarrow y$ is NOT in this equation; y can be anything.

Definition: **Cylinders** are surfaces where all slices are the same.

Example. $z = x^2$. $\leftarrow y$ is NOT in this equation; y can be anything. For any choice of y = k (parallel to _____-plane), the surface looks like

Definition: **Cylinders** are surfaces where all slices are the same.

Example. $z = x^2$. $\leftarrow y$ is NOT in this equation; y can be anything. For any choice of y = k (parallel to _____-plane), the surface looks like a parabola opening toward the positive z-axis. It is a parabolic cylinder.

Definition: **Cylinders** are surfaces where all slices are the same.

Example. $z = x^2$. $\leftarrow y$ is NOT in this equation; y can be anything. For any choice of y = k (parallel to _____-plane), the surface looks like a parabola opening toward the positive z-axis. It is a parabolic cylinder.

Example.
$$y^2 + z^2 = 1$$
.

Definition: **Cylinders** are surfaces where all slices are the same.

Example. $z = x^2$. $\leftarrow y$ is NOT in this equation; y can be anything. For any choice of y = k (parallel to _____-plane), the surface looks like a parabola opening toward the positive z-axis. It is a parabolic cylinder.

Example. $y^2 + z^2 = 1$. $\leftarrow x$ is not in this equation. For any choice of x = k, the surface looks like a unit circle.

Definition: A **quadric surface** is defined by an equation of the form: Ax^2

Definition: A **quadric surface** is defined by an equation of the form: $Ax^2 + By^2$

Definition: A **quadric surface** is defined by an equation of the form: $Ax^2 + By^2 + Cz^2$

Definition: A **quadric surface** is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy$

Definition: A **quadric surface** is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz$

Definition: A **quadric surface** is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz$

Definition: A **quadric surface** is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx$

Definition: A quadric surface is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy$

Definition: A quadric surface is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz$

Definition: A quadric surface is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

Definition: A **quadric surface** is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

They are the analog of conic sections in two dimensions.

Definition: A **quadric surface** is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

They are the analog of conic sections in two dimensions. Through rotation or translation, we need only consider two types:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 and $Ax^2 + By^2 + Iz = 0$.

Definition: A quadric surface is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

They are the analog of conic sections in two dimensions. Through rotation or translation, we need only consider two types:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 and $Ax^2 + By^2 + Iz = 0$.

Strategy: Take slices in each coordinate direction, $\begin{cases} x = \text{constant } k \\ y = \text{constant } k \\ z = \text{constant } k \end{cases}$

Definition: A quadric surface is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

They are the analog of conic sections in two dimensions. Through rotation or translation, we need only consider two types:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 and $Ax^2 + By^2 + Iz = 0$.

Strategy: Take slices in each coordinate direction, piece the slices together to understand the surface. $\begin{cases} x = \text{constant } k \\ y = \text{constant } k \\ z = \text{constant } k \end{cases}$

$$z = \text{constant } k$$

Definition: A quadric surface is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

They are the analog of conic sections in two dimensions. Through rotation or translation, we need only consider two types:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 and $Ax^2 + By^2 + Iz = 0$.

Strategy: Take slices in each coordinate direction, piece the slices together to understand the surface. $\begin{cases} x = \text{constant } k \\ y = \text{constant } k \end{cases}$

$$z = \text{constant } k$$

Example.
$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$
.
When $z = 0$, $x^2 + \frac{y^2}{9} = 1$

Definition: A **quadric surface** is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

They are the analog of conic sections in two dimensions. Through rotation or translation, we need only consider two types:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 and $Ax^2 + By^2 + Iz = 0$.

Strategy: Take slices in each coordinate direction, piece the slices together to understand the surface. $\begin{cases} x = \text{constant } k \\ y = \text{constant } k \\ z = \text{constant } k \end{cases}$

Example.
$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$
.
When $z = 0$, $x^2 + \frac{y^2}{9} = 1$ is an ellipse

Definition: A **quadric surface** is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

They are the analog of conic sections in two dimensions. Through rotation or translation, we need only consider two types:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 and $Ax^2 + By^2 + Iz = 0$.

Strategy: Take slices in each coordinate direction, piece the slices together to understand the surface. $\begin{cases} x = \text{constant } k \\ y = \text{constant } k \\ z = \text{constant } k \end{cases}$

Example.
$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$
.
When $z = 0$, $x^2 + \frac{y^2}{9} = 1$ is an ellipse

Definition: A quadric surface is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

They are the analog of conic sections in two dimensions. Through rotation or translation, we need only consider two types:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 and $Ax^2 + By^2 + Iz = 0$.

Strategy: Take slices in each coordinate direction, piece the slices together to understand the surface. $\begin{cases} x = \text{constant } k \\ y = \text{constant } k \\ z = \text{constant } k \end{cases}$

Example.
$$x^{2} + \frac{y^{2}}{9} + \frac{z^{2}}{4} = 1.$$

When $z = 0$, $x^{2} + \frac{y^{2}}{9} = 1$ is an ellipse.
When $z = k$, $x^{2} + \frac{y^{2}}{9} = 1 - \frac{k^{2}}{4}$ is an ellipse when $1 - \frac{k^{2}}{4} \ge 0.$

Definition: A quadric surface is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

They are the analog of conic sections in two dimensions. Through rotation or translation, we need only consider two types:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 and $Ax^2 + By^2 + Iz = 0$.

Strategy: Take slices in each coordinate direction, piece the slices together to understand the surface. $\begin{cases} x = \text{constant } k \\ y = \text{constant } k \\ z = \text{constant } k \end{cases}$ Example. $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1.$

When z = 0, $x^2 + \frac{y^2}{9} = 1$ is an ellipse. $(-2 \le k \le 2)$ When z = k, $x^2 + \frac{y^2}{9} = 1 - \frac{k^2}{4}$ is an ellipse when $1 - \frac{k^2}{4} \ge 0$.

Definition: A quadric surface is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

They are the analog of conic sections in two dimensions. Through rotation or translation, we need only consider two types:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 and $Ax^2 + By^2 + Iz = 0$.

Strategy: Take slices in each coordinate direction, piece the slices together to understand the surface. $\begin{cases} x = \text{constant } k \\ y = \text{constant } k \end{cases}$

Example.
$$x^{2} + \frac{y^{2}}{9} + \frac{z^{2}}{4} = 1$$
.
When $z = 0$, $x^{2} + \frac{y^{2}}{9} = 1$ is an ellipse.
When $z = k$, $x^{2} + \frac{y^{2}}{9} = 1 - \frac{k^{2}}{4}$ is an ellipse when $1 - \frac{k^{2}}{4} \ge 0$.
When $x = k$, $\frac{y^{2}}{9} + \frac{z^{2}}{4} = 1 - k^{2}$ is an ellipse
When $y = k$, $x^{2} + \frac{z^{2}}{4} = 1 - \frac{k^{2}}{9}$ is an ellipse

Definition: A quadric surface is defined by an equation of the form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$

They are the analog of conic sections in two dimensions. Through rotation or translation, we need only consider two types:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 and $Ax^2 + By^2 + Iz = 0$.

Strategy: Take slices in each coordinate direction, piece the slices together to understand the surface. $\begin{cases} x = \text{constant } k \\ y = \text{constant } k \end{cases}$

Example.
$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$
.
When $z = 0$, $x^2 + \frac{y^2}{9} = 1$ is an ellipse.
When $z = k$, $x^2 + \frac{y^2}{9} = 1 - \frac{k^2}{4}$ is an ellipse when $1 - \frac{k^2}{4} \ge 0$.
When $x = k$, $\frac{y^2}{9} + \frac{z^2}{4} = 1 - k^2$ is an ellipse
When $y = k$, $x^2 + \frac{z^2}{4} = 1 - \frac{k^2}{9}$ is an ellipse
Every slice is an ellipse \rightsquigarrow surface is an ellipsoid.

Example. $z = y^2 - x^2$

Slices x = k y = k z = kEqn Format $z = y^2 - k^2$ $z = k^2 - x^2$ $k = y^2 - x^2$

Conic section

Sketches

Assemble together:

► There are six different families of quadric surfaces.

Online Resources: https://www.youtube.com/watch?v=LBiiOEiD3Yk http://tutorial.math.lamar.edu/Classes/CalcIII/QuadricSurfaces.aspx

► There are six different families of quadric surfaces.

Online Resources: https://www.youtube.com/watch?v=LBiiOEiD3Yk http://tutorial.math.lamar.edu/Classes/CalcIII/QuadricSurfaces.aspx

► There are six different families of quadric surfaces.

- Matching equations to surfaces.
- More variety than conic sections but same building blocks.

Online Resources: https://www.youtube.com/watch?v=LBiiOEiD3Yk http://tutorial.math.lamar.edu/Classes/CalcIII/QuadricSurfaces.aspx

► There are six different families of quadric surfaces.

- Matching equations to surfaces.
- More variety than conic sections but same building blocks.
- ▶ How to find slices, assemble to a rough sketch.

Online Resources:

https://www.youtube.com/watch?v=LBiiOEiD3Yk http://tutorial.math.lamar.edu/Classes/CalcIII/QuadricSurfaces.aspx