Functions

Single-variable functions

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs a real number $f(x)$

Vector functions

$\overrightarrow{\mathbf{r}}: \mathbb{R} \rightarrow \mathbb{R}^{3} \quad$ (or \mathbb{R}^{2} or \mathbb{R}^{n})
$\overrightarrow{\mathbf{r}}: t \mapsto\langle f(t), g(t), h(t)\rangle$
$\overrightarrow{\mathbf{r}}$ takes in a real number t
outputs a vector $\langle f(t), g(t), h(t)\rangle$

Limities and Helices

The limit of a vector function $\overrightarrow{\mathbf{r}}$ is defined by taking the limits of its component functions (as long as each of these exists...)

$$
\lim _{t \rightarrow a} \overrightarrow{\mathbf{r}}(t)=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle
$$

A vector-valued function $\overrightarrow{\boldsymbol{r}}(t)$ is continuous at a if \qquad

Example. Sketch the curve given by $\overrightarrow{\mathbf{r}}(t)=\cos t \overrightarrow{\mathbf{i}}+\sin t \overrightarrow{\mathbf{j}}+t \overrightarrow{\mathbf{k}}$. The x and y components \qquad while the z component \qquad . Plug in some values of t

Intersectionnnnnnnnnnnn

Example. Find a vector function that is the intersection of the cylinder $x^{2}+z^{2}=1$ and the plane $y+z=2$.

Strategems: Find a parametrization... What parameter to use?

- If a curve is oriented in one direction, use that variable as t.
- When the curve is closed, this is not possible-work first in 2D.

Answer: Use the fact that we are on the cylinder. (Eqn 1) Project onto the $x z$-plane and start the parametrization there:
$x(t)=\quad z(t)=$
$\quad \leq t \leq$.

Use (Eqn 2) to find the y-coordinate:

So $\overrightarrow{\mathbf{r}}=$

Derivatives and Derivative-derivative definitions

Define $\overrightarrow{\mathbf{r}}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\overrightarrow{\mathbf{r}}(t+h)-\overrightarrow{\mathbf{r}}(t)}{h}=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle$.
The derivative $\overrightarrow{\mathbf{r}}^{\prime}(t)$ of a vector-valued functionis a vector in the direction tangent to the curve $\overrightarrow{\mathbf{r}}(t)$.

- Standardize. The unit tangent vector $\overrightarrow{\mathbf{T}}=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}$.
- We can take multiple derivatives $\overrightarrow{\mathbf{r}}^{\prime \prime}(t)=\frac{d}{d t}\left(\overrightarrow{\mathbf{r}}^{\prime}(t)\right)$
- A function is smooth on an interval $/$ if
- $\overrightarrow{\mathbf{r}}^{\prime}(t)$ is continuous on I
- and $\overrightarrow{\mathbf{r}}^{\prime}(t) \neq \overrightarrow{\mathbf{0}}$, except possibly at the endpoints of I

We can integrate too. $\int_{a}^{b} \overrightarrow{\mathbf{r}}(t) d t=\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle$
Remember: Indefinite integrals have a (vector) constant of integration. Example. $\int\langle 2 \cos t, \sin t, 2 t\rangle d t=\left\langle 2 \sin t,-\cos t, t^{2}\right\rangle+\overrightarrow{\mathbf{C}}$.

Derivatives

Example. Find the equation of the tangent line to the helix $\overrightarrow{\mathbf{r}}(t)=\langle 2 \cos t, \sin t, t\rangle$ at the point $P=\left(0,1, \frac{\pi}{2}\right)$.
Game plan:

1. Find t^{*} for which the curve goes through the point P.
2. Find the tangent vector $\overrightarrow{\mathbf{r}}^{\prime}(t)$, plug in $t=t^{*}$.
3. Write the equation of the line.

Derivatives rule

- $\frac{d}{d t}(\overrightarrow{\boldsymbol{r}}(t)+\overrightarrow{\mathbf{s}}(t))=\overrightarrow{\mathbf{r}}^{\prime}(t)+\overrightarrow{\boldsymbol{s}}^{\prime}(t)$
- $\frac{d}{d t}(c \overrightarrow{\mathbf{r}}(t))=c \overrightarrow{\mathbf{r}}^{\prime}(t)$
- $\frac{d}{d t}(f(t) \overrightarrow{\mathbf{r}}(t))=f^{\prime}(t) \overrightarrow{\boldsymbol{r}}(t)+f(t) \overrightarrow{\mathbf{r}}^{\prime}(t)$
$-\frac{d}{d t}(\overrightarrow{\boldsymbol{r}}(t) \cdot \overrightarrow{\mathbf{s}}(t))=\overrightarrow{\mathbf{r}}^{\prime}(t) \cdot \overrightarrow{\mathbf{s}}(t)+\overrightarrow{\mathbf{r}}(t) \cdot \overrightarrow{\mathbf{s}}^{\prime}(t)$
- $\frac{d}{d t}(\overrightarrow{\boldsymbol{r}}(t) \times \overrightarrow{\mathbf{s}}(t))=\overrightarrow{\mathbf{r}}^{\prime}(t) \times \overrightarrow{\mathbf{s}}(t)+\overrightarrow{\mathbf{r}}(t) \times \overrightarrow{\mathbf{s}}^{\prime}(t)$
- $\frac{d}{d t}(\overrightarrow{\mathbf{r}}(f(t)))=f^{\prime}(t) \overrightarrow{\mathbf{r}}^{\prime}(f(t))$

