Motion in space

If $\overrightarrow{\mathbf{r}}(t)$ is the vector position of a particle, then

- $\overrightarrow{\mathbf{r}}^{\prime}(t)=\overrightarrow{\mathbf{v}}(t)$ is the vector velocity of the particle.
- $\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right|=|\overrightarrow{\mathbf{v}}(t)|=$ speed of the particle.
- $\overrightarrow{\mathbf{r}}^{\prime \prime}(t)=\overrightarrow{\mathbf{a}}(t)$ is the vector acceleration of the particle.

We can use $\overrightarrow{\mathbf{a}}(t)$ to find the force that an object exerts: $\overrightarrow{\mathbf{F}}(t)=m \overrightarrow{\mathbf{a}}(t)$
Example. Suppose that a mass of 40 kg starts with init. pos'n $\langle 1,0,0\rangle$, initial velocity $\langle 1,-1,1\rangle$ and has acceleration $\overrightarrow{\mathbf{a}}(t)=\langle 4 t, 6 t, 1\rangle$.
(a) Find the position and velocity of the particle as a function of t.
(b) Determine the force that the particle exerts at time $t=2$.

Example. Show that if a particle moves with constant speed, then the velocity and acceleration vectors are orthogonal.

Arc length

The arc length of a vector function is calculated by:

$$
\int_{t=a}^{t=b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}+h^{\prime}(t)^{2}} d t=\int_{t=a}^{t=b}\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right| d t
$$

The arc length function is $s(t)=\int_{u=a}^{u=t}\left|\overrightarrow{\mathbf{r}}^{\prime}(u)\right| d u$.

- We are using u as the parametrization variable instead of t.
- This is a function of t, telling how far along the curve you have traveled since a.
Example. Determine the distance that a particle travels from its initial position $(1,0,0)$ to any point on the curve

$$
\overrightarrow{\mathbf{r}}(t)=\cos t \overrightarrow{\mathbf{i}}+\sin t \overrightarrow{\mathbf{j}}+t \overrightarrow{\mathbf{k}} .
$$

Answer: We are looking for $s(t)$ starting at $t=$ \qquad .
$s(t)=\int_{u=0}^{u=t} \sqrt{\square} d u=$
The distance travelled from time 0 to time t is $s(t)=$ \qquad .

Reparametrization with respect to arc length

You may want to reparametrize your curve so that one unit in your parameter \longleftrightarrow one unit in distance

To do this, we need to replace t by s.
Since we have s as a function of t, we need the inverse function!
In our example, $s=\sqrt{2} t$, so $t=\frac{s}{\sqrt{2}}$. Substituting,

$$
\overrightarrow{\mathbf{r}}(s)=\cos \frac{s}{\sqrt{2}} \overrightarrow{\mathbf{i}}+\sin \frac{s}{\sqrt{2}} \overrightarrow{\mathbf{j}}+\frac{s}{\sqrt{2}} \overrightarrow{\mathbf{k}} .
$$

Frenet Frame

There are many different parametrizations of any one curve.
The vectors $\overrightarrow{\mathbf{r}}(t), \overrightarrow{\mathbf{v}}(t), \overrightarrow{\mathbf{a}}(t)$ depend on the parameter.
But the curve itself has intrinsic properties. At every point:
Three natural vectors make up the Frenet frame, or TNB frame.
$\vec{\top}$ The direction of the tangent vector. $\overrightarrow{\mathrm{T}}(t)=\frac{\overrightarrow{\mathbf{r}}^{\prime}(t)}{\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right|}$.
$\overrightarrow{\mathbf{N}}$ The direction in which the curve is turning. $\overrightarrow{\mathbf{N}}(t)=\frac{\overrightarrow{\mathbf{T}}^{\prime}(t)}{\left|\overrightarrow{\mathbf{T}}^{\prime}(t)\right|}$.
$\overrightarrow{\mathbf{B}}$ The third vector that completes \perp basis. $\overrightarrow{\mathbf{B}}(t)=\overrightarrow{\mathbf{T}}(t) \times \overrightarrow{\mathbf{N}}(t)$
A number that tells how bendy or twisty the curve is.
Definition: The curvature $\kappa(t)$ of a curve ("kappa") tells how quickly $\overrightarrow{\mathbf{T}}$ is changing with respect to distance traveled.

$$
\kappa=\left|\frac{d \overrightarrow{\mathbf{T}}}{d s}\right| \stackrel{\text { chain rule }}{=}\left|\frac{\frac{d \overrightarrow{\mathbf{T}}}{d t}}{\frac{d s}{d t}}\right|=\frac{\left|\overrightarrow{\mathbf{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right|} \stackrel{\text { algebra }}{=} \frac{\left|\overrightarrow{\mathbf{r}}^{\prime}(t) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(t)\right|}{\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right|^{3}} .
$$

The circle that lies along the curve has radius $1 / \kappa$. (!)

Curvature

Example. Determine the vectors of the Frenet frame and the curvature of the curve $\overrightarrow{\mathbf{r}}(t)=\langle\cos t, \sin t, t\rangle$.
Frenet frame: We need $\overrightarrow{\mathbf{r}}^{\prime}(t)=\langle-\sin t, \cos t, 1\rangle$ and $\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right|=$ \qquad .
Then $\overrightarrow{\mathbf{T}}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}=\left\langle\frac{-\sin t}{\sqrt{2}}, \frac{\cos t}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$,
From this we find that $\overrightarrow{\mathbf{T}}^{\prime}(t)=\left\langle\frac{-\cos t}{\sqrt{2}}, \frac{-\sin t}{\sqrt{2}}, 0\right\rangle$, so $\left|\overrightarrow{\mathbf{T}}^{\prime}(t)\right|=$ \qquad .
Then $\overrightarrow{\mathbf{N}}(t)=\frac{\overrightarrow{\mathbf{T}}^{\prime}(t)}{\left|\overrightarrow{\mathbf{T}^{\prime}}(t)\right|}=\langle-\cos t,-\sin t, 0\rangle$.
Now $\overrightarrow{\mathbf{B}}(t)=\overrightarrow{\mathbf{T}}(t) \times \overrightarrow{\mathbf{N}}(t)=\frac{1}{\sqrt{2}}\left|\begin{array}{ccc}\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\ -\sin t & \cos t & 1 \\ -\cos t & -\sin t & 0\end{array}\right|=$
The curvature $\kappa(t)=\frac{\left|\overrightarrow{\mathbf{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right|}=$
Question: Should $\kappa(t)$ be a constant?

Components of Acceleration

The curvature tells us about the centripetal force we feel.
Key idea: Understand $\overrightarrow{\mathbf{a}}$ in terms of the Frenet frame:
How much of the acceleration is toward $\overrightarrow{\mathbf{T}}, \overrightarrow{\mathbf{N}}$, and $\overrightarrow{\mathbf{B}}$?
Differentiate $\overrightarrow{\mathbf{v}}(t)=v(t) \overrightarrow{\mathbf{T}}(t)$. (magnitude (speed) times unit direction)

$$
\overrightarrow{\mathbf{a}}=v^{\prime} \overrightarrow{\mathbf{T}}+v \overrightarrow{\mathbf{T}}^{\prime}=v^{\prime} \overrightarrow{\mathbf{T}}+v\left(\left|\overrightarrow{\mathbf{T}^{\prime}}\right| \overrightarrow{\mathbf{N}}\right)=v^{\prime} \overrightarrow{\mathbf{T}}+\kappa v^{2} \overrightarrow{\mathbf{N}} .
$$

- All acceleration is toward $\overrightarrow{\mathbf{T}}$ and $\overrightarrow{\mathbf{N}}$. (Not to $\overrightarrow{\mathbf{B}}$.)
a_{T} Toward $\overrightarrow{\mathbf{T}}: a_{T}=v^{\prime}$ is rate of change of speed.
a_{N} Toward $\overrightarrow{\mathbf{N}}: a_{N}=\kappa v^{2}$. Curvature times speed squared!
Solve for a_{T}, a_{N} in terms of $\overrightarrow{\boldsymbol{r}}(t)$.
First, $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{a}}=v \overrightarrow{\mathbf{T}} \cdot\left(v^{\prime} \overrightarrow{\mathbf{T}}+\kappa v^{2} \overrightarrow{\mathbf{N}}\right)=v v^{\prime} \overrightarrow{\mathbf{T}} \cdot \overrightarrow{\mathbf{T}}+\kappa v^{3} \overrightarrow{\mathbf{T}} \cdot \overrightarrow{\mathbf{N}}=v v^{\prime}$

$$
\text { So } a_{T}=v^{\prime}=\frac{\vec{v} \cdot \overrightarrow{\mathbf{a}}}{v}=\frac{\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t)}{\left|\vec{r}^{\prime}(t)\right|} \text { and } a_{N}=\kappa v^{2}=\frac{\left|\overrightarrow{r^{\prime}}(t) \times \vec{r}^{\prime \prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|} \begin{gathered}
\text { Nice } \\
\text { symmetry! }
\end{gathered}
$$

Example. Find tang'l, normal comp's of acceleration for $\overrightarrow{\mathbf{r}}=\left\langle t, 2 t, t^{2}\right\rangle$.

