Motion in space — §10.9 48

Motion in space

If ¥(t) is the vector position of a particle, then
» F(t) = V(t) is the vector velocity of the particle.
» |F'(t)| = |V(t)| = speed of the particle.

» F'(t) = a(t) is the vector acceleration of the particle.
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Example. Suppose that a mass of 40 kg starts with init. pos'n (1,0,0),
initial velocity (1, —1,1) and has acceleration a(t) = (4t, 6t,1).
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Motion in space

If ¥(t) is the vector position of a particle, then
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» |F'(t)| = |V(t)| = speed of the particle.
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Example. Suppose that a mass of 40 kg starts with init. pos'n (1,0,0),
initial velocity (1, —1,1) and has acceleration a(t) = (4t, 6t,1).
(a) Find the position and velocity of the particle as a function of t.

(b) Determine the force that the particle exerts at time t = 2.
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Motion in space

If ¥(t) is the vector position of a particle, then
» (t) = V(t) is the vector velocity of the particle.
» |F'(t)| = |V(t)| = speed of the particle.

» F'(t) = a(t) is the vector acceleration of the particle.

We can use a(t) to find the force that an object exerts: F(t) = ma(t)

Example. Suppose that a mass of 40 kg starts with init. pos'n (1,0,0),
initial velocity (1, —1,1) and has acceleration a(t) = (4t, 6t,1).
(a) Find the position and velocity of the particle as a function of t.

(b) Determine the force that the particle exerts at time t = 2.

Example. Show that if a particle moves with constant speed, then
the velocity and acceleration vectors are orthogonal.
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Arc length

The arc Iength of a vector function is calculated by:

F(t 2 4 h(t)2 dt
[V
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Arc length

The arc Iength of a vector function is calculated by:
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u=t
The arc length function is s(t) = / |¥(u)| du.
u
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¥ (t)| dt

49



Arc length — §10.8

Arc length

The arc Iength of a vector function is calculated by:
t=b

/ \/f’ )2 + H(t)? dtz/t 7(t)| dt

=a

- |r/(u)|du

a

The arc length function is s(t) = /
u=

» We are using u as the parametrization variable instead of t.
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» We are using u as the parametrization variable instead of t.

» This is a function of t, telling how far along the curve you
have traveled since a.
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Arc length

The arc length of a vector function is calculated by:
t=b

t=b
[ @R gr e nera= [ R

—=a

u=t

The arc length function is s(t) = / |¥(u)| du.
u=a

» We are using u as the parametrization variable instead of t.

» This is a function of t, telling how far along the curve you
have traveled since a.
Example. Determine the distance that a particle travels from its
initial position (1,0,0) to any point on the curve

F(t) = costi+sintj+ tk.
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Arc length

The arc Iength of a vector function is calculated by:
t=b

/ \/f’ )2+ H(t )zdt:/t 7(t)| dt

—=a

u=t
|¥'(u)| du.

a

» We are using u as the parametrization variable instead of t.

» This is a function of t, telling how far along the curve you
have traveled since a.

The arc length function is s(t) = /
u=

Example. Determine the distance that a particle travels from its
initial position (1,0,0) to any point on the curve

F(t) = costi+sintj+ tk.

Answer: We are looking for s(t) starting at t =

o[
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Arc length

The arc length of a vector function is calculated by:
t=b

t=b
[ @R gr e nera= [ R

—=a

u=t

The arc length function is s(t) = / |¥(u)| du.
u=a

» We are using u as the parametrization variable instead of t.

» This is a function of t, telling how far along the curve you
have traveled since a.

Example. Determine the distance that a particle travels from its
initial position (1,0,0) to any point on the curve
F(t) = costi+sintj+ tk.

Answer: We are looking for s(t) starting at t =
u=t

()= [ du =

u=
The distance travelled from time 0 to time ¢ is s(t) =



Arc length — §10.8

Reparametrization with respect to arc length

You may want to reparametrize your curve so that

one unit in your parameter <— one unit in distance
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Arc length — §10.8 50

Reparametrization with respect to arc length

You may want to reparametrize your curve so that
one unit in your parameter <— one unit in distance
To do this, we need to replace t by s.
Since we have s as a function of t, we need the inverse function!

In our example, s = V2t, sot = % Substituting,

F(s) = cos S5i+sin 5+ Sk

o



Frenet Frame and Curvature — §10.8 & 10.9

Frenet Frame

There are many different parametrizations of any one curve.
The vectors ¥(t), v(t), a(t) depend on the parameter.
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_ |7
| ds

51



Frenet Frame and Curvature — §10.8 & 10.9

Frenet Frame

There are many different parametrizations of any one curve.
The vectors ¥(t), v(t), a(t) depend on the parameter.
But the curve itself has intrinsic properties. At every point:

Three natural vectors make up the Frenet frame, or TNB frame.

T The direction of the tangent vector. f(t) = |§8‘

N The direction in which the curve is turning. N( )=

T()
. (0
B The third vector that completes L basis. B(t) = T(t) x N(t)

A number that tells how bendy or twisty the curve is.
Definition: The curvature (t) of a curve (“kappa”)
tells how quickly T is changing with respect to distance traveled.
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ds

JT
_dt
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R = =
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T The direction of the tangent vector. f(t) = |§8‘

N The direction in which the curve is turning. N( )=

T()
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Frenet Frame

There are many different parametrizations of any one curve.
The vectors ¥(t), v(t), a(t) depend on the parameter.
But the curve itself has intrinsic properties. At every point:

Three natural vectors make up the Frenet frame, or TNB frame.

T The direction of the tangent vector. f(t) = |§8‘

N The direction in which the curve is turning. N( )=

T()
. (0
B The third vector that completes L basis. B(t) = T(t) x N(t)

A number that tells how bendy or twisty the curve is.

Definition: The curvature (t) of a curve (“kappa”)

tells how quickly T is changing with respect to distance traveled.
a7 _ [T(8)] atgebra [F(2) X 77(2))

ds v (1)l v(t)P

JT
_dt
ds
dt
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R =
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Frenet Frame

There are many different parametrizations of any one curve.
The vectors ¥(t), v(t), a(t) depend on the parameter.
But the curve itself has intrinsic properties. At every point:

Three natural vectors make up the Frenet frame, or TNB frame.

T The direction of the tangent vector. f(t) = |§8‘

N The direction in which the curve is turning. N( )= IT( ;l'

T(t
B The third vector that completes L basis. B(t) = T(t) x N(t)

A number that tells how bendy or twisty the curve is.

Definition: The curvature (t) of a curve (“kappa”)
tells how quickly T is changing with respect to distance traveled.

dT T atgebra [F(2) x /(1))
ds % | (o) v (1)

The circle that lies along the curve has radius 1/x. (!)

dt
chain rule dt

R =
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Frenet Frame and Curvature — §10.8 & 10.9

Curvature

Example. Determine the vectors of the Frenet frame and
the curvature of the curve ¥(t) = (cost,sin t, t).
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Curvature

Example. Determine the vectors of the Frenet frame and
the curvature of the curve ¥(t) = (cost,sin t, t).

Frenet frame: We need ¥'(t) = (—sint,cost,1) and |¥'(t)| =

Then 10 = £ ~ (587,55 ),
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Curvature

Example. Determine the vectors of the Frenet frame and

the curvature of the curve ¥(t) = (cost,sin t, t).

Frenet frame: We need ¥'(t )— (— sint,cost, 1) and |F'(t)| =
Then T(t) = Ll — (=sint, ot 1),

[7(2)] V2
From this we find that T'(t) = (=S¢, =58t,0), so [T/(t)] =

N
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Curvature

Example. Determine the vectors of the Frenet frame and
the curvature of the curve ¥(t) = (cost,sin t, t).

Frenet frame: We need ¥'(t) = (—sint,cost,1) and |¥'(t)| =

Then 10 = £~ (587,55 ),

From this we find that T'(t) = (=S¢, =58t,0), so [T/(t)] =

() _ (—cost,—sint,0).

Then N(t) = Tl —
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Curvature

Example. Determine the vectors of the Frenet frame and
the curvature of the curve ¥(t) = (cost,sin t, t).

Frenet frame: We need ¥'(t) = (—sint,cost,1) and |¥'(t)| =

Then T(t) = lgjg& _ (=sint cost 1

From this we find that T'(t) = (=S¢, =58t,0), so [T/(t)] =

V2

() _ (—cost,—sint,0).

Then N(t) = o]

i ik
—sint cost 1
—cost —sint 0

Now B(t) = T(t) x N(t) =

1
V2
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Curvature

Example. Determine the vectors of the Frenet frame and
the curvature of the curve ¥(t) = (cost,sin t, t).

Frenet frame: We need ¥'(t) = (—sint,cost,1) and |F'(t)|

Then T(t) = lgjg& = (e et 1y,

From this we find that T'(t) = (=S¢, =58t,0), so [T/(t)] =

Then N(t) = T (—cost,—sint,0).

[T7(¢)]
. . B 1 i ik
Now B(t) = T(t) x N(t) = ——=|—sint cost 1|=
V2 —cost —sint 0

The curvature k(t) =
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Curvature

Example. Determine the vectors of the Frenet frame and
the curvature of the curve ¥(t) = (cost,sin t, t).

Frenet frame: We need ¥'(t) = (—sint,cost,1) and |F'(t)|

Then T(t) = lgjg& = (Sne st 1y,

From this we find that T'(t) = (=S¢, =58t,0), so [T/(t)] =

Then N(t) = T (—cost,—sint,0).

[T7(¢)]
. . B 1 i ik
Now B(t) = T(t) x N(t) = ——=|—sint cost 1|=
V2 —cost —sint 0

The curvature k(t) =

Question: Should k(t) be a constant?
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Tangential and Normal Components of Acceleration — §10.9

Components of Acceleration

The curvature tells us about the centripetal force we feel.
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Key idea: Understand a in terms of the Frenet frame:
How much of the acceleration is toward T, N, and B?
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Key idea: Understand a in terms of the Frenet frame:
How much of the acceleration is toward T, N, and B?

Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)
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Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand a in terms of the Frenet frame:
How much of the acceleration is toward T, N, and B?

Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)
a=vVT+vT
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Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)

a=vVT+vT =VT+ v(T|N)



Tangential and Normal Components of Acceleration — §10.9 53

Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand a in terms of the Frenet frame:
How much of the acceleration is toward T, N, and B?

Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)
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» All acceleration is toward T and N. (Not to B.)
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The curvature tells us about the centripetal force we feel.
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How much of the acceleration is toward T, N, and B?

Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)
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> All acceleration is toward T and N. (Not to B.)
ar Toward T: ar = V' is rate of change of speed.
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Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand a in terms of the freget frar’rle:

How much of the acceleration is toward T, N, and B?

Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)

a=vVT+vT =VT+ v(T|N) =T+ rv?N.

> All acceleration is toward T and N. (Not to B.)
ar Toward T: ar = V' is rate of change of speed.
ay Toward N: ay = kv?. Curvature times speed squared!

Solve for at, ay in terms of ¥(t).
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Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand a in terms of the Frenet frame:
How much of the acceleration is toward T, N, and B?

Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)
a=vVT+vT =VT+ v(T|N) =T+ rv?N.

> All acceleration is toward T and N. (Not to B.)
ar Toward T: ar = V' is rate of change of speed.
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Solve for at, ay in terms of ¥(t).
First, v-a = vT - (V'T + kv2N)
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Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand a in terms of the Frenet frame:
How much of the acceleration is toward T, N, and B?

Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)
a=vVT+vT =VT+ v(T|N) =T+ rv?N.

> All acceleration is toward T and N. (Not to B.)
ar Toward T: ar = V' is rate of change of speed.
ay Toward N: ay = kv2. Curvature times speed squared!
Solve for at, ay in terms of ¥(t).
First, V-a=vT - (VT +xv2N) = w'T-T + x3T-N
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Components of Acceleration

The curvature tells us about the centripetal force we feel.
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a=vVT+vT =VT+ v(T|N) =T+ rv?N.
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Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand a in terms of the Frenet frame:
How much of the acceleration is toward T, N, and B?

Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)
a=vVT+vT =VT+ v(T|N) =T+ rv?N.

> All acceleration is toward T and N. (Not to B.)
ar Toward T: ar = V' is rate of change of speed.
ay Toward N: ay = kv2. Curvature times speed squared!
Solve for at, ay in terms of ¥(t).
First, v-a=vT - (VT +xv2N) = w'T- T+ xv3T -N = w/

!

-
v-a
v

Soar =V =
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Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand a in terms of the Frenet frame:
How much of the acceleration is toward T, N, and B?

Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)
a=vVT+vT =VT+ v(T|N) =T+ rv?N.

> All acceleration is toward T and N. (Not to B.)
ar Toward T: ar = V' is rate of change of speed.
ay Toward N: ay = kv2. Curvature times speed squared!
Solve for at, ay in terms of ¥(t).
First, v-a=vT - (VT +xv2N) = w'T- T+ xv3T -N = w/

_—¥a _ FOF
S0ar =Vvi=1="h)
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Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand a in terms of the freget frar’rle:

How much of the acceleration is toward T, N, and B?

Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)

a=vVT+vT =VT+ v(T|N) =T+ rv?N.

> All acceleration is toward T and N. (Not to B.)
ar Toward T: ar = V' is rate of change of speed.
ay Toward N: ay = kv?. Curvature times speed squared!

Solve for at, ay in terms of ¥(t).

First, v-a=vT- (v’f—l—fivzﬁ) —wWT - T+r3T-N=w/

Soay — v/ — ¥3 _ FOF()

va — 2
" o] and ay = kv
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Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand a in terms of the freget frar’rle:

How much of the acceleration is toward T, N, and B?

Differentiate w(t) = v(t)T(t). (magnitude (speed) times unit direction)

a=vVT+vT =VT+ v(T|N) =T+ rv?N.

> All acceleration is toward T and N. (Not to B.)
ar Toward T: ar = V' is rate of change of speed.
ay Toward N: ay = kv?. Curvature times speed squared!

Solve for at, ay in terms of ¥(t).
First, v-a=vT - (VT +s2N) = w'T - T+ s3T-N=w/

So ar = v/ = %5 _r (‘f?)/(ft)‘(f) 2 _ |[F(e)xrF (t)"F/(t)P

and ay = kv HOIE
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Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand a in terms of the Frenet frame:
How much of the acceleration is toward T, N, and B?

Differentiate v(t) = v(t)T(t). (magnitude (speed) times unit direction)
Aa=VT+vT =VT+v(TIN) = VT + sv2N.

» All acceleration is toward T and N. (Not to B.)
ar Toward T: ar = V' is rate of change of speed.
ay Toward N: ay = kv?. Curvature times speed squared!

Solve for ar, ay in terms of ¥(t).
First, v-a =vT - (VT +s2N) = w'T- T+ s3T-N=w/

v-a ¥ (t)r(t)

7 ¥ (1)< ()] Nice
v [F()]

2
and ay = kKv° = Z
N ¥(0)]  symmetry!

Soar =V =
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Components of Acceleration

The curvature tells us about the centripetal force we feel.

Key idea: Understand a in terms of the Frenet frame:

How much of the acceleration is toward f N and B?

Differentiate v(t) = v(t)T(t). (magnitude (speed) times unit direction)

Aa=VT+vT =VT+v(TIN) = VT + sv2N.

> All acceleration is toward T and N. (Not to B.)
ar Toward 'I_j: at = v/ is rate of change of speed.
ay Toward N: ay = kv?. Curvature times speed squared!
Solve for ar, ay in terms of ¥(t).
First, v-a=vT - (VT +#xv2N) = w'T - T+ 3T -N = w/

_ o va _ F)F(1) |¥'(t)x#"(t)]  Nice
S0ar=v =% = TR RO

2
and ay = kKv° = Z
N ¥(0)]  symmetry!

Example. Find tang'l, normal comp's of acceleration for ¥ = (t, 2t, t2).
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