Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$

Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$ Domain:

Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$ Domain: x-vals where f defined.

Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$
Domain: x-vals where f defined.
Range:

Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$
Domain: x-vals where f defined.
Range: y-vals that f can output.

Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$ Domain: x-vals where f defined. Range: y-vals that f can output.

Function of several variables

$f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad\left(\right.$ or $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$
$f:(x, y) \mapsto f(x, y)=z$
f takes in two real numbers $x \& y$ outputs real number $z=f(x, y)$

Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$ Domain: x-vals where f defined. Range: y-vals that f can output.

Function of several variables

$f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad\left(\right.$ or $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$
$f:(x, y) \mapsto f(x, y)=z$
f takes in two real numbers x \& y outputs real number $z=f(x, y)$
Domain: (x, y)-vals where f defined.
Range: z-vals that f can output.

Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$ Domain: x-vals where f defined. Range: y-vals that f can output.

Function of several variables

$f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad\left(\right.$ or $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$
$f:(x, y) \mapsto f(x, y)=z$
f takes in two real numbers $x \& y$ outputs real number $z=f(x, y)$ Domain: (x, y)-vals where f defined. Range: z-vals that f can output.

Three ways to understand functions of two variables:

Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$ Domain: x-vals where f defined. Range: y-vals that f can output.

Function of several variables

$f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad\left(\right.$ or $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$
$f:(x, y) \mapsto f(x, y)=z$
f takes in two real numbers $x \& y$ outputs real number $z=f(x, y)$ Domain: (x, y)-vals where f defined. Range: z-vals that f can output.

Three ways to understand functions of two variables:

- What is the domain of the function? (A set in 2D)

Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$ Domain: x-vals where f defined. Range: y-vals that f can output.

Function of several variables

$f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad\left(\right.$ or $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$
$f:(x, y) \mapsto f(x, y)=z$
f takes in two real numbers $x \& y$ outputs real number $z=f(x, y)$ Domain: (x, y)-vals where f defined. Range: z-vals that f can output.

Three ways to understand functions of two variables:

- What is the domain of the function? (A set in 2D)
- Sketching the graph of a function. (A surface over this set)

Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$ Domain: x-vals where f defined. Range: y-vals that f can output.

Function of several variables

$f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad\left(\right.$ or $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$
$f:(x, y) \mapsto f(x, y)=z$
f takes in two real numbers $x \& y$ outputs real number $z=f(x, y)$ Domain: (x, y)-vals where f defined. Range: z-vals that f can output.

Three ways to understand functions of two variables:

- What is the domain of the function? (A set in 2D)
- Sketching the graph of a function. (A surface over this set)
- Drawing the level curves of the function (A set of 2D curves)

Functions of Several Variables

Function of one variable

$f: \mathbb{R} \rightarrow \mathbb{R}$
$f: x \mapsto f(x)$
f takes in a real number x outputs real number $y=f(x)$ Domain: x-vals where f defined. Range: y-vals that f can output.

Function of several variables

$f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad\left(\right.$ or $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$
$f:(x, y) \mapsto f(x, y)=z$
f takes in two real numbers $x \& y$ outputs real number $z=f(x, y)$ Domain: (x, y)-vals where f defined. Range: z-vals that f can output.

Three ways to understand functions of two variables:

- What is the domain of the function? (A set in 2D)
- Sketching the graph of a function. (A surface over this set)
- Drawing the level curves of the function (A set of 2D curves)
- A curve represents points in the domain at the same "height".

The domain of a function of two variables

Example. What is the domain of the functions

$$
f(x, y)=\frac{\sqrt{x+y+1}}{x-1} \quad \text { and } \quad g(x, y)=x \ln \left(y^{2}-x\right) ?
$$

The domain of a function of two variables

Example. What is the domain of the functions

$$
f(x, y)=\frac{\sqrt{x+y+1}}{x-1} \quad \text { and } \quad g(x, y)=x \ln \left(y^{2}-x\right) ?
$$

Example. Sketch the following functions

$$
f(x, y)=6-3 x-2 y \quad \text { and } \quad g(x, y)=\sqrt{9-x^{2}-y^{2}} .
$$

Level curves

The level curves or contour curves of a function f are the set of curves of the equations $f(x, y)=k$ for varying constants k.

Level curves

The level curves or contour curves of a function f are the set of curves of the equations $f(x, y)=k$ for varying constants k.

1. Temperature maps (isothermals)

Level curves

The level curves or contour curves of a function f are the set of curves of the equations $f(x, y)=k$ for varying constants k.

1. Temperature maps (isothermals)
2. Mountain range maps (contour line)

Level curves

The level curves or contour curves of a function f are the set of curves of the equations $f(x, y)=k$ for varying constants k.

1. Temperature maps (isothermals)
2. Mountain range maps (contour line)

- Visualize level curves being lifted to piece together the surface.

Level curves

The level curves or contour curves of a function f are the set of curves of the equations $f(x, y)=k$ for varying constants k.

1. Temperature maps (isothermals)
2. Mountain range maps (contour line)

- Visualize level curves being lifted to piece together the surface.
- Where the lines are close together, the surface is steeper.

Level curves

The level curves or contour curves of a function f are the set of curves of the equations $f(x, y)=k$ for varying constants k.

1. Temperature maps (isothermals)
2. Mountain range maps (contour line)

- Visualize level curves being lifted to piece together the surface.
- Where the lines are close together, the surface is steeper.

Example. What surface corresponds to this contour map?

Level curves

The level curves or contour curves of a function f are the set of curves of the equations $f(x, y)=k$ for varying constants k.

1. Temperature maps (isothermals)
2. Mountain range maps (contour line)

- Visualize level curves being lifted to piece together the surface.
- Where the lines are close together, the surface is steeper.

Example. What surface corresponds to this contour map?

Example. Sketch the level curves of the function $h(x, y)=\sqrt{9-x^{2}-y^{2}}$ for $k=0,1,2,3$.

More variables

We can define functions of more variables $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Input: n numbers. Output: one number

More variables

We can define functions of more variables $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Input: n numbers. Output: one number
- The simplest type of function is a linear function: $f(\overrightarrow{\mathbf{x}})=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{x}}$.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

More variables

We can define functions of more variables $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Input: n numbers. Output: one number
- The simplest type of function is a linear function: $f(\overrightarrow{\mathbf{x}})=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{x}}$.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

Think: c_{i} is the unit cost of object i. Cost of x_{i} units is \qquad .

More variables

We can define functions of more variables $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Input: n numbers. Output: one number
- The simplest type of function is a linear function: $f(\overrightarrow{\mathbf{x}})=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{x}}$.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

Think: c_{i} is the unit cost of object i. Cost of x_{i} units is \qquad . So $f(\overrightarrow{\mathbf{x}})$ is the total cost of all objects. (How much was lunch?)

More variables

We can define functions of more variables $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Input: n numbers. Output: one number
- The simplest type of function is a linear function: $f(\overrightarrow{\mathbf{x}})=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{x}}$.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

Think: c_{i} is the unit cost of object i. Cost of x_{i} units is \qquad . So $f(\overrightarrow{\mathbf{x}})$ is the total cost of all objects. (How much was lunch?)

- Can not visualize the surface when $n \geq 3$.

More variables

We can define functions of more variables $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Input: n numbers. Output: one number
- The simplest type of function is a linear function: $f(\overrightarrow{\mathbf{x}})=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{x}}$.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

Think: c_{i} is the unit cost of object i. Cost of x_{i} units is \qquad . So $f(\overrightarrow{\mathbf{x}})$ is the total cost of all objects. (How much was lunch?)

- Can not visualize the surface when $n \geq 3$.
- When $n=3$, we can understand the level surfaces of f.

More variables

We can define functions of more variables $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Input: n numbers. Output: one number
- The simplest type of function is a linear function: $f(\overrightarrow{\mathbf{x}})=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{x}}$.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

Think: c_{i} is the unit cost of object i. Cost of x_{i} units is \qquad . So $f(\overrightarrow{\mathbf{x}})$ is the total cost of all objects. (How much was lunch?)

- Can not visualize the surface when $n \geq 3$.
- When $n=3$, we can understand the level surfaces of f. (Where is $f(x, y, z)=k$?)

More variables

We can define functions of more variables $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Input: n numbers. Output: one number
- The simplest type of function is a linear function: $f(\overrightarrow{\mathbf{x}})=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{x}}$.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

Think: c_{i} is the unit cost of object i. Cost of x_{i} units is \qquad . So $f(\overrightarrow{\mathbf{x}})$ is the total cost of all objects. (How much was lunch?)

- Can not visualize the surface when $n \geq 3$.
- When $n=3$, we can understand the level surfaces of f. (Where is $f(x, y, z)=k$?)
This gives a surface on which the function has a constant value.
Think: Which positions in this room have the same temperature?

