Function of one variable $\lim_{x \to a} f(x) = L$

Visually:

Function of one variable $\lim_{x \to a} f(x) = L$ Visually:

Interpretation:

However you approach x = a, the value f(x) **always** approaches *L*.

Function of one variable $\lim_{x \to a} f(x) = L$ Visually:

Interpretation:

However you approach x = a, the value f(x) **always** approaches *L*.

Function of several variables $\lim_{(x,y)\to(a,b)} f(x,y) = L$ Visually:

Interpretation:

However you approach (x, y) = (a, b), the value f(x, y) **always** approaches *L*.

Function of one variable $\lim_{x \to a} f(x) = L$ Visually:

Interpretation:

However you approach x = a, the value f(x) **always** approaches *L*.

Function of several variables $\lim_{(x,y)\to(a,b)} f(x,y) = L$ Visually:

Interpretation:

However you approach (x, y) = (a, b),

the value f(x, y) always approaches L.

Function of one variable $\lim_{x \to a} f(x) = L$ Visually:

Interpretation:

However you approach x = a, the value f(x) **always** approaches *L*.

Mathematically:

No matter how close to y = L you insist you must be (ε -close), There is a way to choose a range δ around x = a to ensure that All values within δ of a give function values within ε of L. Function of several variables $\lim_{(x,y)\to(a,b)} f(x,y) = L$ Visually:

Interpretation:

However you approach (x, y) = (a, b), the value f(x, y) always approaches L.

Function of one variable $\lim_{x \to a} f(x) = L$ Visually:

Interpretation:

However you approach x = a, the value f(x) **always** approaches *L*.

Mathematically:

No matter how close to y = L you insist you must be (ε -close), There is a way to choose a range δ around x = a to ensure that All values within δ of a give function values within ε of L. Function of several variables $\lim_{(x,y)\to(a,b)} f(x,y) = L$ Visually:

Interpretation:

However you approach (x, y) = (a, b), the value f(x, y) **always** approaches *L*.

Mathematically:

No matter how close to z = L you insist you must be (ε -close), There is a way to choose a radius δ around (x, y) = (a, b) to ensure that All values within δ of (a, b) give

function values within ε of *L*.

Question: Why not take 1D limits along lines headed toward (a, b)?

Question: Why not take 1D limits along lines headed toward (a, b)? *Answer:* Because looks can be deceiving!

Question: Why not take 1D limits along lines headed toward (a, b)? *Answer:* Because looks can be deceiving!

Key idea: When limits along different paths do not agree, limit DNE.

Question: Why not take 1D limits along lines headed toward (a, b)?*Answer:* Because looks can be deceiving!Key idea: When limits along different paths do not agree, limit DNE.

Example. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ does not exist. Along the *x*-axis:

Along the *y*-axis:

Question: Why not take 1D limits along lines headed toward (a, b)?*Answer:* Because looks can be deceiving!Key idea: When limits along different paths do not agree, limit DNE.

Example. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ does not exist. Along the *x*-axis:

Along the *y*-axis:

The limits along different paths do not agree, so the limit DNE.

Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ exist? Along the *x*-axis: Along the *y*-axis:

Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ exist? Along the x-axis: Along the y-axis: Along the line y = x:

Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ exist? Along the *x*-axis: Along the *y*-axis: Along the line y = x: *Answer*:

Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$ exist?

Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ exist? Along the x-axis: Along the y-axis: Along the line y = x: Answer: Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$ exist?

Along the *x*-axis:

Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ exist? Along the x-axis: Along the y-axis: Along the line y = x: Answer: Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$ exist?

Along the *x*-axis:

Along the y-axis:

Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ exist? Along the x-axis: Along the y-axis: Along the line y = x: Answer: Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$ exist? Along the x-axis:

Along the *y*-axis:

Along any line y = mx:

Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ exist? Along the x-axis: Along the y-axis: Along the line y = x: Answer: Example. Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$ exist? Along the x-axis:

Along the *y*-axis:

Along any line y = mx:

Answer:

A function f(x, y) is **continuous** at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$.

A function f(x, y) is continuous at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$. The function exists at (a, b).

A function f(x, y) is **continuous** at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$.

- ▶ The function exists at (*a*, *b*).
- ▶ The limit exists at (*a*, *b*).

A function f(x, y) is **continuous** at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$.

- ▶ The function exists at (*a*, *b*).
- ▶ The limit exists at (*a*, *b*).
- ▶ The two values are equal.

A function f(x, y) is **continuous** at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$.

- ▶ The function exists at (*a*, *b*).
- ▶ The limit exists at (*a*, *b*).
- ▶ The two values are equal.

Continuity is a given in certain cases:

A function f(x, y) is **continuous** at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$.

- ▶ The function exists at (*a*, *b*).
- ▶ The limit exists at (*a*, *b*).
- ▶ The two values are equal.

Continuity is a given in certain cases:

► A polynomial is continuous everywhere.

A function f(x, y) is **continuous** at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$.

- ▶ The function exists at (*a*, *b*).
- ▶ The limit exists at (*a*, *b*).
- ▶ The two values are equal.

Continuity is a given in certain cases:

- ► A polynomial is continuous everywhere.
- ► A rational function is continuous on its domain.

A function f(x, y) is **continuous** at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$.

- ▶ The function exists at (*a*, *b*).
- ▶ The limit exists at (*a*, *b*).
- ▶ The two values are equal.

Continuity is a given in certain cases:

- ► A polynomial is continuous everywhere.
- ► A rational function is continuous on its domain.
- ▶ The composition of two continuous functions is continuous.

A function f(x, y) is **continuous** at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$.

- ▶ The function exists at (*a*, *b*).
- ▶ The limit exists at (*a*, *b*).
- ▶ The two values are equal.

Continuity is a given in certain cases:

- ► A polynomial is continuous everywhere.
- ▶ A rational function is continuous on its domain.
- ▶ The composition of two continuous functions is continuous.

Example. $\arctan(y/x)$ is continuous on its domain since $\arctan(t)$ is continuous and y/x is a rational function of x and y.

A function f(x, y) is **continuous** at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$.

- ▶ The function exists at (*a*, *b*).
- ▶ The limit exists at (*a*, *b*).
- ▶ The two values are equal.

Continuity is a given in certain cases:

- ► A polynomial is continuous everywhere.
- ► A rational function is continuous on its domain.
- ▶ The composition of two continuous functions is continuous.

Example. $\arctan(y/x)$ is continuous on its domain since $\arctan(t)$ is continuous and y/x is a rational function of x and y.

Consequence: If we know f(x, y) is continuous at (a, b),

A function f(x, y) is **continuous** at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$.

- ▶ The function exists at (*a*, *b*).
- ▶ The limit exists at (*a*, *b*).
- ▶ The two values are equal.

Continuity is a given in certain cases:

- ► A polynomial is continuous everywhere.
- ► A rational function is continuous on its domain.
- ▶ The composition of two continuous functions is continuous.

Example. $\arctan(y/x)$ is continuous on its domain since $\arctan(t)$ is continuous and y/x is a rational function of x and y.

Consequence: If we know f(x, y) is continuous at (a, b), then $\lim_{(x,y)\to(a,b)} f(x, y)$ exists!

Suppose f is a function of both x and y.

Fix y = b and let only x vary.

Suppose f is a function of both x and y.

- Fix y = b and let only x vary.
- ▶ Then f(x, b) is a function of one variable.

Suppose f is a function of both x and y.

- Fix y = b and let only x vary.
- Then f(x, b) is a function of one variable.
- ▶ We can take its derivative with respect to *x*.

Suppose f is a function of both x and y.

- Fix y = b and let only x vary.
- Then f(x, b) is a function of one variable.
- ▶ We can take its derivative with respect to *x*.

This is the **partial derivative of** f with respect to x. We write:

$$f_x(x,y)$$
 or $rac{\partial f}{\partial x}$ or $rac{\partial}{\partial x}f(x,y)$ or $rac{\partial z}{\partial x}$ or D_xf .

Suppose f is a function of both x and y.

- Fix y = b and let only x vary.
- Then f(x, b) is a function of one variable.
- ▶ We can take its derivative with respect to *x*.

This is the **partial derivative of** f with respect to x. We write:

$$f_x(x,y)$$
 or $\frac{\partial f}{\partial x}$ or $\frac{\partial}{\partial x}f(x,y)$ or $\frac{\partial z}{\partial x}$ or $D_x f$.

★ Idea: Treat other variables as constants, differentiate normally. ★ Example. Let $f(x, y) = x^3 + x^2y^3 - 2y^2$. Find $f_x(2, 1)$ and $f_y(2, 1)$.

Example. Let
$$g(x, y) = \sin \frac{x}{1+y}$$
. Find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$.

Example. Let
$$g(x, y) = \sin \frac{x}{1+y}$$
. Find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$.

Example. If
$$x^3 + y^3 + z^3 + 6xyz = 1$$
, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Example. Let
$$g(x, y) = \sin \frac{x}{1+y}$$
. Find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$.

Example. If $x^3 + y^3 + z^3 + 6xyz = 1$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. *Answer:* Here z is defined implicitly as a function of x and y.

Example. Let
$$g(x, y) = \sin \frac{x}{1+y}$$
. Find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$.

Example. If
$$x^3 + y^3 + z^3 + 6xyz = 1$$
, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
Answer: Here z is defined implicitly as a function of x and y.
 $\frac{\partial}{\partial x}(x^3 + y^3 + z^3 + 6xyz) = \frac{\partial}{\partial x}(0)$

Example. Let
$$g(x, y) = \sin \frac{x}{1+y}$$
. Find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$.

Example. If
$$x^3 + y^3 + z^3 + 6xyz = 1$$
, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
Answer: Here z is defined implicitly as a function of x and y.
 $\frac{\partial}{\partial x}(x^3 + y^3 + z^3 + 6xyz) = \frac{\partial}{\partial x}(0)$

$$\frac{\partial z}{\partial x} = \frac{-(3x^2 + 6yz)}{3z^2 + 6xy} \quad \text{and} \quad \frac{\partial z}{\partial y} = \frac{-(3y^2 + 6xz)}{3z^2 + 6xy}$$