Limits

Function of one variable

$$
\lim _{x \rightarrow a} f(x)=L
$$

Visually:

Limits

Function of one variable

$$
\lim _{x \rightarrow a} f(x)=L
$$

Visually:
Interpretation:
However you approach $x=a$, the value $f(x)$ always approaches L.

Limits

Function of one variable

$$
\lim _{x \rightarrow a} f(x)=L
$$

Visually:
Interpretation:
However you approach $x=a$, the value $f(x)$ always approaches L.

Function of several variables

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

Visually:
Interpretation:
However you approach $(x, y)=(a, b)$, the value $f(x, y)$ always approaches L.

Limits

Function of one variable

$$
\lim _{x \rightarrow a} f(x)=L
$$

Visually:
Interpretation:
However you approach $x=a$, the value $f(x)$ always approaches L.

Function of several variables

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

Visually:
Interpretation:
However you approach $(x, y)=(a, b)$,
the value $f(x, y)$ always approaches L.

Limits

Function of one variable

$$
\lim _{x \rightarrow a} f(x)=L
$$

Visually:
Interpretation:
However you approach $x=a$, the value $f(x)$ always approaches L.

Mathematically:
No matter how close to $y=L$ you insist you must be (ε-close), There is a way to choose a range δ around $x=a$ to ensure that All values within δ of a give function values within ε of L.

Function of several variables

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

Visually:
Interpretation:
However you approach $(x, y)=(a, b)$, the value $f(x, y)$ always approaches L.

Limits

Function of one variable

$$
\lim _{x \rightarrow a} f(x)=L
$$

Visually:
Interpretation:
However you approach $x=a$, the value $f(x)$ always approaches L.

Mathematically:

No matter how close to $y=L$ you insist you must be (ε-close),
There is a way to choose a range δ around $x=a$ to ensure that All values within δ of a give function values within ε of L.

Function of several variables

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

Visually:
Interpretation:
However you approach $(x, y)=(a, b)$, the value $f(x, y)$ always approaches L.

Mathematically:

No matter how close to $z=L$ you insist you must be (ε-close),
There is a way to choose a radius δ around $(x, y)=(a, b)$ to ensure that All values within δ of (a, b) give function values within ε of L.

How might we convince ourselves that a limit exists?

How might we convince ourselves that a limit exists?

Question: Why not take 1D limits along lines headed toward (a, b) ?

How might we convince ourselves that a limit exists?

Question: Why not take 1D limits along lines headed toward (a, b) ?
Answer: Because looks can be deceiving!

How might we convince ourselves that a limit exists?

Question: Why not take 1D limits along lines headed toward (a, b) ?
Answer: Because looks can be deceiving!
Key idea: When limits along different paths do not agree, limit DNE.

How might we convince ourselves that a limit exists?

Question: Why not take 1D limits along lines headed toward (a, b) ?
Answer: Because looks can be deceiving!
Key idea: When limits along different paths do not agree, limit DNE.
Example. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exist.
Along the x-axis:
Along the y-axis:

How might we convince ourselves that a limit exists?

Question: Why not take 1D limits along lines headed toward (a, b) ?
Answer: Because looks can be deceiving!
Key idea: When limits along different paths do not agree, limit DNE.
Example. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exist.
Along the x-axis:
Along the y-axis:
The limits along different paths do not agree, so the limit DNE.

More lines of thought

Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ exist?
Along the x-axis:
Along the y-axis:

More lines of thought

Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ exist?
Along the x-axis:
Along the y-axis:
Along the line $y=x$:

More lines of thought

Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ exist?
Along the x-axis:
Along the y-axis:
Along the line $y=x$:
Answer:
Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{2}}$ exist?

More lines of thought

Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ exist?
Along the x-axis:
Along the y-axis:
Along the line $y=x$:
Answer:
Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{2}}$ exist?
Along the x-axis:

More lines of thought

Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ exist?
Along the x-axis:
Along the y-axis:
Along the line $y=x$:
Answer:
Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{2}}$ exist?
Along the x-axis:
Along the y-axis:

More lines of thought

Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ exist?
Along the x-axis:
Along the y-axis:
Along the line $y=x$:
Answer:
Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{2}}$ exist?
Along the x-axis:
Along the y-axis:
Along any line $y=m x$:

More lines of thought

Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ exist?
Along the x-axis:
Along the y-axis:
Along the line $y=x$:
Answer:
Example. Does the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{2}}$ exist?
Along the x-axis:
Along the y-axis:
Along any line $y=m x$:

Answer:

When DO we know a limit exists?

A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

When DO we know a limit exists?

A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

- The function exists at (a, b).

When DO we know a limit exists?

A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

- The function exists at (a, b).
- The limit exists at (a, b).

When DO we know a limit exists?

A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

- The function exists at (a, b).
- The limit exists at (a, b).
- The two values are equal.

When DO we know a limit exists?

A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

- The function exists at (a, b).
- The limit exists at (a, b).
- The two values are equal.

Continuity is a given in certain cases:

When DO we know a limit exists?

A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

- The function exists at (a, b).
- The limit exists at (a, b).
- The two values are equal.

Continuity is a given in certain cases:

- A polynomial is continuous everywhere.

When DO we know a limit exists?

A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

- The function exists at (a, b).
- The limit exists at (a, b).
- The two values are equal.

Continuity is a given in certain cases:

- A polynomial is continuous everywhere.
- A rational function is continuous on its domain.

When DO we know a limit exists?

A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

- The function exists at (a, b).
- The limit exists at (a, b).
- The two values are equal.

Continuity is a given in certain cases:

- A polynomial is continuous everywhere.
- A rational function is continuous on its domain.
- The composition of two continuous functions is continuous.

When DO we know a limit exists?

A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

- The function exists at (a, b).
- The limit exists at (a, b).
- The two values are equal.

Continuity is a given in certain cases:

- A polynomial is continuous everywhere.
- A rational function is continuous on its domain.
- The composition of two continuous functions is continuous.

Example. $\arctan (y / x)$ is continuous on its domain since $\arctan (t)$ is continuous and y / x is a rational function of x and y.

When DO we know a limit exists?

A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

- The function exists at (a, b).
- The limit exists at (a, b).
- The two values are equal.

Continuity is a given in certain cases:

- A polynomial is continuous everywhere.
- A rational function is continuous on its domain.
- The composition of two continuous functions is continuous.

Example. $\arctan (y / x)$ is continuous on its domain since $\arctan (t)$ is continuous and y / x is a rational function of x and y.

Consequence: If we know $f(x, y)$ is continuous at (a, b),

When DO we know a limit exists?

A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

- The function exists at (a, b).
- The limit exists at (a, b).
- The two values are equal.

Continuity is a given in certain cases:

- A polynomial is continuous everywhere.
- A rational function is continuous on its domain.
- The composition of two continuous functions is continuous.

Example. $\arctan (y / x)$ is continuous on its domain since $\arctan (t)$ is continuous and y / x is a rational function of x and y.

Consequence: If we know $f(x, y)$ is continuous at (a, b), then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists!

Partial derivatives

Suppose f is a function of both x and y.

- Fix $y=b$ and let only x vary.

Partial derivatives

Suppose f is a function of both x and y.

- Fix $y=b$ and let only x vary.
- Then $f(x, b)$ is a function of one variable.

Partial derivatives

Suppose f is a function of both x and y.

- Fix $y=b$ and let only x vary.
- Then $f(x, b)$ is a function of one variable.
- We can take its derivative with respect to x.

Partial derivatives

Suppose f is a function of both x and y.

- Fix $y=b$ and let only x vary.
- Then $f(x, b)$ is a function of one variable.
- We can take its derivative with respect to x.

This is the partial derivative of f with respect to x. We write:

$$
f_{x}(x, y) \text { or } \frac{\partial f}{\partial x} \text { or } \frac{\partial}{\partial x} f(x, y) \text { or } \frac{\partial z}{\partial x} \text { or } D_{x} f .
$$

Partial derivatives

Suppose f is a function of both x and y.

- Fix $y=b$ and let only x vary.
- Then $f(x, b)$ is a function of one variable.
- We can take its derivative with respect to x.

This is the partial derivative of f with respect to x. We write:

$$
f_{x}(x, y) \text { or } \frac{\partial f}{\partial x} \text { or } \frac{\partial}{\partial x} f(x, y) \text { or } \frac{\partial z}{\partial x} \text { or } D_{x} f .
$$

* Idea: Treat other variables as constants, differentiate normally. \star

Example. Let $f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}$. Find $f_{x}(2,1)$ and $f_{y}(2,1)$.

More examples

Example. Let $g(x, y)=\sin \frac{x}{1+y}$. Find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$.

More examples

Example. Let $g(x, y)=\sin \frac{x}{1+y}$. Find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$.

Example. If $x^{3}+y^{3}+z^{3}+6 x y z=1$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

More examples

Example. Let $g(x, y)=\sin \frac{x}{1+y}$. Find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$.

Example. If $x^{3}+y^{3}+z^{3}+6 x y z=1$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
Answer: Here z is defined implicitly as a function of x and y.

More examples

Example. Let $g(x, y)=\sin \frac{x}{1+y}$. Find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$.

Example. If $x^{3}+y^{3}+z^{3}+6 x y z=1$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
Answer: Here z is defined implicitly as a function of x and y. $\frac{\partial}{\partial x}\left(x^{3}+y^{3}+z^{3}+6 x y z\right)=\frac{\partial}{\partial x}(0)$

More examples

Example. Let $g(x, y)=\sin \frac{x}{1+y}$. Find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$.

Example. If $x^{3}+y^{3}+z^{3}+6 x y z=1$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
Answer: Here z is defined implicitly as a function of x and y. $\frac{\partial}{\partial x}\left(x^{3}+y^{3}+z^{3}+6 x y z\right)=\frac{\partial}{\partial x}(0)$

$$
\frac{\partial z}{\partial x}=\frac{-\left(3 x^{2}+6 y z\right)}{3 z^{2}+6 x y} \quad \text { and } \quad \frac{\partial z}{\partial y}=\frac{-\left(3 y^{2}+6 x z\right)}{3 z^{2}+6 x y}
$$

