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More partials

This works with more variables too.
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We might even decide to mix our partial derivatives.
fy = (F)y = 22 (x,y).
A big deal: Partial Differential Equations

» Laplace's Equation: aa—zu(x,y) + aa—;u(x,y) =0is a PDE.

» Solutions (fcns u that satisfy) give formulas related to
distribution of heat on a surface, how fluids & electricity flow.

» Wave Equation: (%u(x, t) = aaa—;u(x, t) is a PDE.

» Solutions describe the position of waves as a function of time.
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fxyzz = fzxyz = fzyzx =
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Interpretation of partial derivatives

Function of one variable Function of several variables
%f(x) at x=a %f(x,y) at  (x,y)=(a,b)

slope of tangent line to the curve slope of tangent line to the curve
y = f(x) on the surface z = f(x, y) where

sliced by the vertical plane y = b
at x = a. at x = a.

“What is the rate of change of “If y is fixed, what is the rate of

f(x) as x changes?” change of f(x, y) as x changes?”
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