This works with more variables too.

$$\frac{\partial}{\partial z} \left(e^{xy} \ln z \right) =$$
 _____ and $\frac{\partial}{\partial x} \left(e^{xy} \ln z \right) =$ _____

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) =$$
 _____ and $\frac{\partial}{\partial x} (e^{xy} \ln z) =$ _____

We can also take higher derivatives.

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) = \underline{\qquad}$$
 and $\frac{\partial}{\partial x} (e^{xy} \ln z) = \underline{\qquad}$

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) = \underline{\qquad}$$
 and $\frac{\partial}{\partial x} (e^{xy} \ln z) = \underline{\qquad}$

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy}$$

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) =$$
_____ and $\frac{\partial}{\partial x} (e^{xy} \ln z) =$ _____

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y =$$

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) = \underline{\qquad} \text{ and } \frac{\partial}{\partial x} (e^{xy} \ln z) = \underline{\qquad}$$

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y).$$

This works with more variables too.

$$\frac{\partial}{\partial z} \left(e^{xy} \ln z \right) =$$
 _____ and $\frac{\partial}{\partial x} \left(e^{xy} \ln z \right) =$ _____

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y).$$

A big deal: Partial Differential Equations

▶ Laplace's Equation: $\frac{\partial^2}{\partial x^2}u(x,y) + \frac{\partial^2}{\partial y^2}u(x,y) = 0$ is a PDE.

This works with more variables too.

$$\frac{\partial}{\partial z} \left(e^{xy} \ln z \right) = \underline{\hspace{1cm}}$$
 and $\frac{\partial}{\partial x} \left(e^{xy} \ln z \right) = \underline{\hspace{1cm}}$

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y).$$

A big deal: Partial Differential Equations

- ► Laplace's Equation: $\frac{\partial^2}{\partial x^2} u(x,y) + \frac{\partial^2}{\partial y^2} u(x,y) = 0$ is a PDE.
 - ▶ Solutions (fcns *u* that satisfy) give formulas related to distribution of heat on a surface, how fluids & electricity flow.

This works with more variables too.

$$\frac{\partial}{\partial z} \left(e^{xy} \ln z \right) =$$
 _____ and $\frac{\partial}{\partial x} \left(e^{xy} \ln z \right) =$ _____

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y).$$

A big deal: Partial Differential Equations

- ▶ Laplace's Equation: $\frac{\partial^2}{\partial x^2}u(x,y) + \frac{\partial^2}{\partial y^2}u(x,y) = 0$ is a PDE.
 - ▶ Solutions (fcns *u* that satisfy) give formulas related to distribution of heat on a surface, how fluids & electricity flow.
- ▶ Wave Equation: $\frac{\partial^2}{\partial t^2}u(x,t) = a\frac{\partial^2}{\partial x^2}u(x,t)$ is a PDE.

This works with more variables too.

$$\frac{\partial}{\partial z} (e^{xy} \ln z) =$$
 _____ and $\frac{\partial}{\partial x} (e^{xy} \ln z) =$ _____

We can also take higher derivatives.

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y)$$
 or $\frac{\partial^2}{\partial x^2} f(x, y)$ or $f_{xx}(x, y)$

We might even decide to mix our partial derivatives.

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y).$$

A big deal: Partial Differential Equations

- ▶ Laplace's Equation: $\frac{\partial^2}{\partial x^2}u(x,y) + \frac{\partial^2}{\partial y^2}u(x,y) = 0$ is a PDE.
 - ▶ Solutions (fcns *u* that satisfy) give formulas related to distribution of heat on a surface, how fluids & electricity flow.
- ▶ Wave Equation: $\frac{\partial^2}{\partial t^2}u(x,t) = a\frac{\partial^2}{\partial x^2}u(x,t)$ is a PDE.
 - ▶ Solutions describe the position of waves as a function of time.

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$$f_{x} = f_{y} =$$

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$f_{x} =$	$f_y =$	
$f_{xx} = f_{xy} =$	$f_{yx} = f_{yy} =$	

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$f_{yx} = f_{yy} =$

Notice:

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$f_{x} =$	$f_y =$	
$f_{xx} = f_{xy} =$	$f_{yx} = f_{yy} =$	

Notice:

Clairaut's Theorem (mid 1700's)

Suppose f(x,y) is defined on a disk D containing (a,b).

If f_{xy} and f_{yx} are continuous on D, then $f_{xy}(a,b) = f_{yx}(a,b)$.

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$f_{x} =$	$f_y =$	
$f_{xx} = f_{xy} =$	$f_{yx} = f_{yy} =$	

Notice: _____

Clairaut's Theorem (mid 1700's)

Suppose f(x, y) is defined on a disk D containing (a, b). If f_{xy} and f_{yx} are continuous on D, then $f_{xy}(a, b) = f_{yx}(a, b)$.

Consequence: Order partial derivatives however you want.

Example. Calculate all second-order partial derivatives of

$$f(x,y) = x^3 + x^2y^3 - 2y^2.$$

$f_{X} =$	$f_y =$	
$f_{xx} = f_{xy} =$	$f_{yx} = f_{yy} =$	

Notice: ____

Clairaut's Theorem (mid 1700's)

Suppose f(x, y) is defined on a disk D containing (a, b). If f_{xy} and f_{yx} are continuous on D, then $f_{xy}(a, b) = f_{yx}(a, b)$.

Consequence: Order partial derivatives however you want.

$$f_{xyzz} = f_{zxyz} = f_{zyzx} = \cdots$$

Function of one variable

$$\frac{d}{dx}f(x)$$
 at $x=a$

Function of one variable

$$\frac{d}{dx}f(x)$$
 at $x=a$

slope of tangent line to the curve

$$y = f(x)$$

at x = a.

Function of one variable

$$\frac{d}{dx}f(x)$$
 at $x=a$

slope of tangent line to the curve

$$y = f(x)$$

at x = a.

"What is the rate of change of f(x) as x changes?"

Function of one variable

$$\frac{d}{dx}f(x)$$
 at $x=a$

slope of tangent line to the curve

$$y = f(x)$$

at x = a.

"What is the rate of change of f(x) as x changes?"

Function of several variables

$$\frac{\partial}{\partial x} f(x, y)$$
 at $(x, y) = (a, b)$

Function of one variable

$$\frac{d}{dx}f(x)$$
 at $x=a$

slope of tangent line to the curve

$$y = f(x)$$

at x = a.

"What is the rate of change of f(x) as x changes?"

Function of several variables

$$\frac{\partial}{\partial x} f(x, y)$$
 at $(x, y) = (a, b)$

slope of tangent line to the curve on the surface z = f(x, y) where sliced by the vertical plane y = bat x = a. Partial Derivatives — §11.3

Interpretation of partial derivatives

Function of one variable

$$\frac{d}{dx}f(x)$$
 at $x=a$

slope of tangent line to the curve

$$y = f(x)$$

at x = a.

"What is the rate of change of f(x) as x changes?"

Function of several variables

$$\frac{\partial}{\partial x} f(x, y)$$
 at $(x, y) = (a, b)$

slope of tangent line to the curve on the surface z = f(x, y) where sliced by the vertical plane y = b at x = a.

"If y is fixed, what is the rate of change of f(x, y) as x changes?"