More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$ \qquad
We can also take higher derivatives.

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$ \qquad
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$ \qquad
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}
$$

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$ \qquad
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=
$$

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$ \qquad
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y) .
$$

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y)
$$

A big deal: Partial Differential Equations

- Laplace's Equation: $\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0$ is a PDE.

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y) .
$$

A big deal: Partial Differential Equations

- Laplace's Equation: $\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0$ is a PDE.
- Solutions (fcns u that satisfy) give formulas related to distribution of heat on a surface, how fluids \& electricity flow.

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y)
$$

A big deal: Partial Differential Equations

- Laplace's Equation: $\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0$ is a PDE.
- Solutions (fcns u that satisfy) give formulas related to distribution of heat on a surface, how fluids \& electricity flow.
- Wave Equation: $\frac{\partial^{2}}{\partial t^{2}} u(x, t)=a \frac{\partial^{2}}{\partial x^{2}} u(x, t)$ is a PDE.

More partials

This works with more variables too.
$\frac{\partial}{\partial z}\left(e^{x y} \ln z\right)=\ldots$ and $\frac{\partial}{\partial x}\left(e^{x y} \ln z\right)=$
We can also take higher derivatives.

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x, y) \quad \text { or } \quad \frac{\partial^{2}}{\partial x^{2}} f(x, y) \quad \text { or } \quad f_{x x}(x, y)
$$

We might even decide to mix our partial derivatives.

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y)
$$

A big deal: Partial Differential Equations

- Laplace's Equation: $\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0$ is a PDE.
- Solutions (fcns u that satisfy) give formulas related to distribution of heat on a surface, how fluids \& electricity flow.
- Wave Equation: $\frac{\partial^{2}}{\partial t^{2}} u(x, t)=a \frac{\partial^{2}}{\partial x^{2}} u(x, t)$ is a PDE.
- Solutions describe the position of waves as a function of time.

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}
$$

$$
f_{x}=
$$

$$
f_{y}=
$$

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2} .
$$

$$
\begin{array}{ll}
f_{x}= & f_{y}= \\
f_{x x}= & f_{y x}= \\
f_{x y}= & f_{y y}=
\end{array}
$$

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2} .
$$

$$
\begin{array}{ll}
f_{x}= & f_{y}= \\
f_{x x}= & f_{y x}= \\
f_{x y}= & f_{y y}=
\end{array}
$$

Notice:

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}
$$

$$
\begin{array}{ll}
f_{x}= & f_{y}= \\
f_{x x}= & f_{y x}= \\
f_{x y}= & f_{y y}=
\end{array}
$$

Notice:
Clairaut's Theorem (mid 1700's)
Suppose $f(x, y)$ is defined on a disk D containing (a, b). If $f_{x y}$ and $f_{y x}$ are continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$.

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}
$$

$$
\begin{array}{ll}
f_{x}= & f_{y}= \\
f_{x x}= & f_{y x}= \\
f_{x y}= & f_{y y}=
\end{array}
$$

Notice:
Clairaut's Theorem (mid 1700's)
Suppose $f(x, y)$ is defined on a disk D containing (a, b).
If $f_{x y}$ and $f_{y x}$ are continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$.
Consequence: Order partial derivatives however you want.

Clairaut's Theorem

Example. Calculate all second-order partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}
$$

$$
\begin{array}{ll}
f_{x}= & f_{y}= \\
f_{x x}= & f_{y x}= \\
f_{x y}= & f_{y y}=
\end{array}
$$

Notice:
Clairaut's Theorem (mid 1700's)
Suppose $f(x, y)$ is defined on a disk D containing (a, b).
If $f_{x y}$ and $f_{y x}$ are continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$.
Consequence: Order partial derivatives however you want.

$$
f_{x y z z}=f_{z x y z}=f_{z y z x}=\cdots
$$

Interpretation of partial derivatives

Function of one variable

$$
\frac{d}{d x} f(x) \quad \text { at } \quad x=a
$$

Interpretation of partial derivatives

Function of one variable

$$
\frac{d}{d x} f(x) \quad \text { at } \quad x=a
$$

slope of tangent line to the curve

$$
y=f(x)
$$

at $x=a$.

Interpretation of partial derivatives

Function of one variable

$$
\frac{d}{d x} f(x) \text { at } x=a
$$

slope of tangent line to the curve

$$
y=f(x)
$$

at $x=a$.
"What is the rate of change of $f(x)$ as x changes?"

Interpretation of partial derivatives

Function of one variable

$$
\frac{d}{d x} f(x) \quad \text { at } \quad x=a
$$

slope of tangent line to the curve

$$
y=f(x)
$$

at $x=a$.
"What is the rate of change of $f(x)$ as x changes?"

Function of several variables

$$
\frac{\partial}{\partial x} f(x, y) \quad \text { at } \quad(x, y)=(a, b)
$$

Interpretation of partial derivatives

Function of one variable

$$
\frac{d}{d x} f(x) \quad \text { at } \quad x=a
$$

slope of tangent line to the curve

$$
y=f(x)
$$

at $x=a$.
"What is the rate of change of $f(x)$ as x changes?"

Function of several variables

$$
\frac{\partial}{\partial x} f(x, y) \quad \text { at } \quad(x, y)=(a, b)
$$

slope of tangent line to the curve on the surface $z=f(x, y)$ where sliced by the vertical plane $y=b$ at $x=a$.

Interpretation of partial derivatives

Function of one variable

$$
\frac{d}{d x} f(x) \quad \text { at } \quad x=a
$$

slope of tangent line to the curve

$$
y=f(x)
$$

at $x=a$.
"What is the rate of change of $f(x)$ as x changes?"

Function of several variables

$$
\frac{\partial}{\partial x} f(x, y) \quad \text { at } \quad(x, y)=(a, b)
$$

slope of tangent line to the curve on the surface $z=f(x, y)$ where sliced by the vertical plane $y=b$ at $x=a$.
"If y is fixed, what is the rate of change of $f(x, y)$ as x changes?"

