
Partial Derivatives — §11.3 64

More partials

This works with more variables too.
∂
∂z

(
exy ln z

)
= and ∂

∂x

(
exy ln z

)
=

We can also take higher derivatives.

∂
∂x

∂
∂x f (x , y) or ∂2

∂x2
f (x , y) or fxx(x , y)

We might even decide to mix our partial derivatives.

fxy = (fx)y = ∂
∂y

∂
∂x f (x , y).

A big deal: Partial Differential Equations

I Laplace’s Equation: ∂2

∂x2
u(x , y) + ∂2

∂y2 u(x , y) = 0 is a PDE.

I Solutions (fcns u that satisfy) give formulas related to
distribution of heat on a surface, how fluids & electricity flow.

I Wave Equation: ∂2

∂t2
u(x , t) = a ∂2

∂x2
u(x , t) is a PDE.

I Solutions describe the position of waves as a function of time.
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Clairaut’s Theorem

Example. Calculate all second-order partial derivatives of

f (x , y) = x3 + x2y3 − 2y2.

fx = fy =

fxx = fyx =
fxy = fyy =

Notice:

Clairaut’s Theorem (mid 1700’s)
Suppose f (x , y) is defined on a disk D containing (a, b).
If fxy and fyx are continuous on D, then fxy (a, b) = fyx(a, b).

Consequence: Order partial derivatives however you want.

fxyzz = fzxyz = fzyzx = · · ·
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Interpretation of partial derivatives

Function of one variable

d
dx f (x) at x = a

slope of tangent line to the curve

y = f (x)

at x = a.

“What is the rate of change of
f (x) as x changes?”

Function of several variables

∂
∂x f (x , y) at (x , y) = (a, b)

slope of tangent line to the curve
on the surface z = f (x , y) where
sliced by the vertical plane y = b
at x = a.

“If y is fixed, what is the rate of
change of f (x , y) as x changes?”
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