Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of tangent lines along the surface.

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of
tangent lines along the surface. They lie in the tangent plane.

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of tangent lines along the surface.
They lie in the tangent plane.
"When we zoom into a smooth surface, the surface looks like a plane."

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of tangent lines along the surface.
They lie in the tangent plane.
"When we zoom into a smooth surface, the surface looks like a plane."

For any curve on the surface through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, the tangent line to the curve would be in this plane too.

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of tangent lines along the surface.
They lie in the tangent plane.
"When we zoom into a smooth surface, the surface looks like a plane."

For any curve on the surface through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, the tangent line to the curve would be in this plane too.

The equation of this tangent plane is easy.

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of tangent lines along the surface.
They lie in the tangent plane.
"When we zoom into a smooth surface, the surface looks like a plane."

For any curve on the surface through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, the tangent line to the curve would be in this plane too.

The equation of this tangent plane is easy.

$$
\left(z-z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Tangenty

$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $\left(x_{0}, y_{0}\right)$ are slopes of tangent lines along the surface.
They lie in the tangent plane.
"When we zoom into a smooth surface, the surface looks like a plane."

For any curve on the surface through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, the tangent line to the curve would be in this plane too.

The equation of this tangent plane is easy.

$$
\left(z-z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

(Point-slope format)

Planey

Example. What is the eqn of the tangent plane to $z=x e^{x y}$ at $(1,0)$?

Planey

Example. What is the eqn of the tangent plane to $z=x e^{x y}$ at $(1,0)$? Game Plan:

1. Find the partial derivatives, evaluate at $(1,0)$.

Planey

Example. What is the eqn of the tangent plane to $z=x e^{x y}$ at $(1,0)$? Game Plan:

1. Find the partial derivatives, evaluate at $(1,0)$.
(Find slopes)
2. Determine the point on the surface.
(Find point)

Planey

Example. What is the eqn of the tangent plane to $z=x e^{x y}$ at $(1,0)$? Game Plan:

1. Find the partial derivatives, evaluate at $(1,0)$.
(Find slopes)
2. Determine the point on the surface.
(Find point)
3. Write down equation of plane.
(Point-slope formula)

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function.
$T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.
Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function.
$T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.
Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near
The tangent plane there is $T(x, y)=x+y$.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near
The tangent plane there is $T(x, y)=x+y$.
So: $f(1.1,-0.1) \approx T(1.1,-0.1)=$ \qquad

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near
The tangent plane there is $T(x, y)=x+y$.
So: $f(1.1,-0.1) \approx T(1.1,-0.1)=$ \qquad .

Note: $f(1.1,-0.1)=1.1 e^{-0.11} \approx .985$.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near \qquad .
The tangent plane there is $T(x, y)=x+y$.
So: $f(1.1,-0.1) \approx T(1.1,-0.1)=$ \qquad .

Note: $f(1.1,-0.1)=1.1 e^{-0.11} \approx .985$.
In more dimensions: Suppose $f(\overrightarrow{\mathbf{v}})=f(w, x, y, z)$.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function. $T(x, y)$ gives a "good enough" value for $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.

Example. Use a linear approximation of $f(x, y)=x e^{x y}$ to approximate $f(1.1,-0.1)$.
Answer: $(1.1,-0.1)$ is a point near \qquad
The tangent plane there is $T(x, y)=x+y$.
So: $f(1.1,-0.1) \approx T(1.1,-0.1)=$ \qquad .

Note: $f(1.1,-0.1)=1.1 e^{-0.11} \approx .985$.
In more dimensions: Suppose $f(\overrightarrow{\mathbf{v}})=f(w, x, y, z)$.
A linear approximation near $\overrightarrow{\mathbf{v}}_{0}=\left(w_{0}, x_{0}, y_{0}, z_{0}\right)$ would be $f(\overrightarrow{\mathbf{v}})-f\left(\overrightarrow{\mathbf{v}}_{0}\right) \approx f_{w}\left(\overrightarrow{\mathbf{v}}_{0}\right)\left(w-w_{0}\right)+f_{x}\left(\overrightarrow{\mathbf{v}}_{0}\right)\left(x-x_{0}\right)+f_{y}\left(\overrightarrow{\mathbf{v}}_{0}\right)\left(y-y_{0}\right)+f_{z}\left(\overrightarrow{\mathbf{v}}_{0}\right)\left(z-z_{0}\right)$

Differentials

Differentials are the other way to understand linear approximations.

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

$d z$ is a approximation for how much z actually changes.

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

$d z$ is a approximation for how much z actually changes.
Example. If $z=x^{2}+3 x y-y^{2}$, find $d z$.

$$
d z=
$$

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

$d z$ is a approximation for how much z actually changes.
Example. If $z=x^{2}+3 x y-y^{2}$, find $d z$.

$$
d z=
$$

Conclusion: If x changes from $2 \rightarrow 2.05, d x=$ \qquad
If y changes from $3 \rightarrow 2.96, d y=$ \qquad .

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

$d z$ is a approximation for how much z actually changes.
Example. If $z=x^{2}+3 x y-y^{2}$, find $d z$.

$$
d z=
$$

Conclusion: If x changes from $2 \rightarrow 2.05, d x=$ \qquad
If y changes from $3 \rightarrow 2.96, d y=$ \qquad .
We would expect z to change by \qquad .

Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

$d z$ is a approximation for how much z actually changes.
Example. If $z=x^{2}+3 x y-y^{2}$, find $d z$.

$$
d z=
$$

Conclusion: If x changes from $2 \rightarrow 2.05, d x=$ \qquad
If y changes from $3 \rightarrow 2.96, d y=$ \qquad .
We would expect z to change by \qquad .

The true change is .6449 .

