$\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

They lie in the **tangent plane**.

 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

They lie in the **tangent plane**.

"When we zoom into a smooth surface, the surface looks like a plane."

 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

They lie in the **tangent plane**.

"When we zoom into a smooth surface, the surface looks like a plane."

For any curve on the surface through $(x_0, y_0, f(x_0, y_0))$, the tangent line to the curve would be in this plane too.

 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

They lie in the **tangent plane**.

"When we zoom into a smooth surface, the surface looks like a plane."

For any curve on the surface through $(x_0, y_0, f(x_0, y_0))$, the tangent line to the curve would be in this plane too.

The equation of this tangent plane is easy.

 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

They lie in the tangent plane.

"When we zoom into a smooth surface, the surface looks like a plane."

For any curve on the surface through $(x_0, y_0, f(x_0, y_0))$, the tangent line to the curve would be in this plane too.

The equation of this tangent plane is easy.

$$(z-z_0) = f_x(x_0, y_0)(x-x_0) + f_y(x_0, y_0)(y-y_0)$$

 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (x_0, y_0) are slopes of tangent lines along the surface.

They lie in the tangent plane.

"When we zoom into a smooth surface, the surface looks like a plane."

For any curve on the surface through $(x_0, y_0, f(x_0, y_0))$, the tangent line to the curve would be in this plane too.

The equation of this tangent plane is easy.

$$(z-z_0)=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)$$

(Point-slope format)

Planey

Example. What is the eqn of the tangent plane to $z = xe^{xy}$ at (1,0)?

Planey

Example. What is the eqn of the tangent plane to $z = xe^{xy}$ at (1,0)?

Game Plan:

1. Find the partial derivatives, evaluate at (1,0). (Find slopes)

Planey

Example. What is the eqn of the tangent plane to $z = xe^{xy}$ at (1,0)? Game Plan:

1. Find the partial derivatives, evaluate at (1,0). (Find slopes)

2. Determine the point on the surface. (Find point)

Planey

Example. What is the eqn of the tangent plane to $z = xe^{xy}$ at (1,0)? Game Plan:

1. Find the partial derivatives, evaluate at (1,0). (Find slopes)

2. Determine the point on the surface.

(Find point)

3. Write down equation of plane.

(Point-slope formula)

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function.

Linear Approximation

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near _____

The tangent plane there is T(x, y) = x + y.

Key idea: Use tangent plane as linear approximation to the function.

T(x,y) gives a "good enough" value for f(x,y) near (x_0,y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near

The tangent plane there is T(x, y) = x + y.

So: $f(1.1, -0.1) \approx T(1.1, -0.1) =$ _____

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near _____.

The tangent plane there is T(x, y) = x + y.

So: $f(1.1, -0.1) \approx T(1.1, -0.1) =$ _____.

Note: $f(1.1, -0.1) = 1.1e^{-0.11} \approx .985$.

Key idea: Use tangent plane as linear approximation to the function.

T(x, y) gives a "good enough" value for f(x, y) near (x_0, y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near _____.

The tangent plane there is T(x, y) = x + y.

So: $f(1.1, -0.1) \approx T(1.1, -0.1) =$ _____.

Note: $f(1.1, -0.1) = 1.1e^{-0.11} \approx .985$.

In more dimensions: Suppose $f(\vec{\mathbf{v}}) = f(w, x, y, z)$.

Key idea: Use tangent plane as linear approximation to the function.

T(x,y) gives a "good enough" value for f(x,y) near (x_0,y_0) .

Example. Use a linear approximation of $f(x, y) = xe^{xy}$ to approximate f(1.1, -0.1).

Answer: (1.1, -0.1) is a point near _____.

The tangent plane there is T(x, y) = x + y.

So: $f(1.1, -0.1) \approx T(1.1, -0.1) = \underline{\hspace{1cm}}$.

Note: $f(1.1, -0.1) = 1.1e^{-0.11} \approx .985$.

In more dimensions: Suppose $f(\vec{\mathbf{v}}) = f(w, x, y, z)$.

A linear approximation near $\vec{\mathbf{v}}_0 = (w_0, x_0, y_0, z_0)$ would be

$$f(\vec{\mathbf{v}}) - f(\vec{\mathbf{v}}_0) \approx f_w(\vec{\mathbf{v}}_0)(w - w_0) + f_x(\vec{\mathbf{v}}_0)(x - x_0) + f_y(\vec{\mathbf{v}}_0)(y - y_0) + f_z(\vec{\mathbf{v}}_0)(z - z_0)$$

Differentials are the other way to understand linear approximations.

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

dz is a approximation for how much z actually changes.

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

dz is a approximation for how much z actually changes.

Example. If
$$z = x^2 + 3xy - y^2$$
, find dz .
 $dz =$

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

dz is a approximation for how much z actually changes.

Example. If
$$z = x^2 + 3xy - y^2$$
, find dz .
 $dz =$

Conclusion: If x changes from
$$2 \rightarrow 2.05$$
, $dx =$ _______.

If y changes from $3 \rightarrow 2.96$, $dy =$ ______.

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

dz is a approximation for how much z actually changes.

Example. If
$$z = x^2 + 3xy - y^2$$
, find dz .
 $dz =$

Conclusion: If x changes from $2 \rightarrow 2.05$, dx =_______.

If y changes from $3 \rightarrow 2.96$, dy =_______.

We would expect z to change by _____

Differentials are the other way to understand linear approximations. How much does z change as x and y change?

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

dz is a approximation for how much z actually changes.

Example. If
$$z = x^2 + 3xy - y^2$$
, find dz .
 $dz =$

Conclusion: If x changes from $2 \rightarrow 2.05$, dx =_______.

If y changes from $3 \rightarrow 2.96$, dy =_______.

We would expect z to change by _______.

The true change is .6449.