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3X f and af at (xo, yo) are slopes of

tangent Imes along the surface.
They lie in the tangent plane.

“When we zoom into a smooth surface,
the surface looks like a plane.”

For any curve on the surface through (xo, yo, f(x0, y0)).
the tangent line to the curve would be in this plane too.

The equation of this tangent plane is easy.

(z — 20) = fi(x0, yo)(x — Xx0) + £, (X0, ¥0)(¥ — ¥o)

(Point-slope format)
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Planey
Example. What is the eqn of the tangent plane to z = xe* at (1,0)?
Game Plan:
1. Find the partial derivatives, evaluate at (1, 0). (Find slopes)
2. Determine the point on the surface. (Find point)

3. Write down equation of plane. (Point-slope formula)
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Key idea: Use tangent plane as linear approximation to the function.
T(x,y) gives a "good enough” value for f(x,y) near (xo, yo).

Example. Use a linear approximation of f(x,y) = xe¥ to
approximate (1.1, —0.1).

Answer: (1.1,—0.1) is a point near .
The tangent plane there is T(x,y) = x+y.

So: f(1.1,—0.1) ~ T(1.1,-0.1) = .
Note: f(1.1,—0.1) = 1.1e7 %! ~ .985.

In more dimensions: Suppose f(V) = f(w, x,y, z).

A linear approximation near Vo = (wp, X0, Yo, 20) would be

f(V)—f (Vo) ~ fu (Vo) (w—wo)+£ (Vo) (x—x0)+1, (Vo) (y—y0)+£(Vo) (z2—20)
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Differentials

Differentials are the other way to understand linear approximations.
How much does z change as x and y change?

dz = 82 dx + %2 dy

dz is a approximation for how much z actually changes.

Example. If z= x?+3xy — y?, find dz.
dz =

Conclusion: If x changes from 2 — 2.05, dx =
If y changes from 3 — 2.96, dy =

We would expect z to change by

The true change is .6449.
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