Chain Rule

Function of one variable

Suppose $y=f(x)$ and $x=g(t)$.
That is, $y=f(g(t))$.
The chain rule gives:

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t} \\
& \frac{d y}{d t}=f^{\prime}(g(t)) \cdot g^{\prime}(t)
\end{aligned}
$$

Key idea:

You must add contributions from all dependencies.

Function of several variables

Suppose $z=f(x, y)$ and $\left\{\begin{array}{l}x=g(t) \\ y=h(t)\end{array}\right.$
So $z=f(g(t), h(t))$. So $z=f(g(t), h(t))$.

The chain rule gives

$$
\begin{aligned}
\frac{d z}{d t}= & \frac{\partial z}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d t} \\
\frac{d z}{d t}= & f_{x}(g(t), h(t)) \cdot g^{\prime}(t)+ \\
& f_{y}(g(t), h(t)) \cdot h^{\prime}(t)
\end{aligned}
$$

Example. Let $z=x^{2} y+3 x y^{2}$, where $x=\sin 2 t, y=\cos t$. Find $\frac{d z}{d t}, z^{\prime}(0)$. Answer:

More Chains

All dependencies

Alternatively, we might have $z=f(x, y)$
and $x=g(s, t), y=h(s, t)$.
Then $\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$.

Example. Consider $u=x^{4} y+y^{2} z^{3}$ where $x=r s e^{t}, y=r s^{2} e^{-t}, z=r^{2} s(\sin t)$. Find $\frac{\partial u}{\partial s}$.

In full generality: If u is a function of $x_{1}, x_{2}, \ldots, x_{n}$ and each x_{j} is a function of $t_{1}, t_{2}, \ldots, t_{m}$, then

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial t_{i}}+\cdots+\frac{\partial u}{\partial x_{n}} \cdot \frac{\partial x_{n}}{\partial t_{i}} .
$$

Implicit differentiation

- Simplify implicit differentiation calculations!

Involving two variables

Consider $F(x, y)=C \quad$ like Implicitly y is a function of x :

$$
F(x, f(x))=C
$$

Differentiating w.r.t. x :

$$
\begin{array}{r}
F(x, y)=C \\
\frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0
\end{array}
$$

Solving for $\frac{d y}{d x}$ gives

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}
$$

Involving three variables

Consider $F(x, y, z)=C$
Implicitly z is a function of x and y :

$$
F(x, y, f(x, y))=C
$$

Differentiating w.r.t. x :

$$
\begin{aligned}
F(x, y, z) & =C \\
\frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x}+\frac{\partial F}{\partial z} \frac{d z}{d x} & =0
\end{aligned}
$$

Solving for $\frac{\partial z}{\partial x}$ gives

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}
$$

Example. Find $\frac{\partial z}{\partial x}$ if $x^{3}+y^{2}+z^{3}+6 x y z=1$

Definition of the directional derivative

Partial derivatives allow us to see how fast a function changes.
$D_{x} f=f_{x}(x, y)$ is the rate of change of f in the x-direction. Toward $\overrightarrow{\mathbf{i}}=(1,0)$
$D_{y} f=f_{y}(x, y)$ is the rate of change of f in the y-direction. Toward $\overrightarrow{\mathbf{j}}=(0,1)$
Question: How fast is $f(x, y)$ changing in some other direction?
What does that even mean?
Question: What is the rate of change of f toward unit vector $\overrightarrow{\mathbf{u}}=(a, b)=(\cos \theta, \sin \theta)$?

Definition: The directional derivative of f in the direction of $\overrightarrow{\mathbf{u}}$ is

$$
D_{\overrightarrow{\mathbf{u}}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b
$$

Directional derivative example

Example. Find $D_{\overrightarrow{\mathbf{u}}} f$ if $f(x, y)=x^{3}-3 x y+4 y^{2}$ and $\overrightarrow{\mathbf{u}}$ is the unit vector in the $x y$-plane at angle $\theta=\pi / 6$.
Answer: First, find the vector $\overrightarrow{\mathbf{u}}=$
Next, find the partial derivatives:
$\frac{\partial f}{\partial x}=\quad \frac{\partial f}{\partial y}=$
We conclude that $D_{\overrightarrow{\mathrm{u}}} f(x, y)=$
Example. Calculate $D_{\overrightarrow{\mathrm{u}}} f(1,2)$ and interpret this answer.

$$
\begin{aligned}
D_{\overrightarrow{\mathrm{u}}} f(1,2) & =(3 \cdot 1-3 \cdot 2) \frac{\sqrt{3}}{2}+(-3 \cdot 1+8 \cdot 2) \frac{1}{2} \\
& =\frac{13-2 \sqrt{3}}{2} \approx 3.9
\end{aligned}
$$

Interpretation: One unit step in the $\overrightarrow{\mathbf{u}}$ direction increases $f(x, y)$ by approximately 3.9 units.

