Function of one variable

```
Suppose y = f(x) and x = g(t).
That is, y = f(g(t)).
```

Function of one variable Suppose y = f(x) and x = g(t). That is, y = f(g(t)). The chain rule gives: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$

Function of one variable Suppose y = f(x) and x = g(t). That is, y = f(g(t)). The chain rule gives: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ $\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$

Function of one variable Suppose y = f(x) and x = g(t). That is, y = f(g(t)). The chain rule gives: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ $\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$ Function of several variables Suppose z = f(x, y) and $\begin{cases} x = g(t) \\ y = h(t) \end{cases}$ So z = f(g(t), h(t)).

Function of one variable Suppose y = f(x) and x = g(t). That is, y = f(g(t)). The chain rule gives: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ $\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$ Function of several variables Suppose z = f(x, y) and $\begin{cases} x = g(t) \\ y = h(t) \end{cases}$ So z = f(g(t), h(t)).

The chain rule gives

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

Function of one variable Suppose y = f(x) and x = g(t). That is, y = f(g(t)). The chain rule gives: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ $\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$ Function of several variables Suppose z = f(x, y) and $\begin{cases} x = g(t) \\ y = h(t) \end{cases}$ So z = f(g(t), h(t)).

The chain rule gives

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$
$$\frac{dz}{dt} = f_{x}(g(t), h(t)) \cdot g'(t) + f_{y}(g(t), h(t)) \cdot h'(t)$$

Function of one variable Suppose y = f(x) and x = g(t). That is, y = f(g(t)). The chain rule gives: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ $\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$

Key idea: You must add contributions from all dependencies.

Function of several variables Suppose z = f(x, y) and $\begin{cases} x = g(t) \\ y = h(t) \end{cases}$ So z = f(g(t), h(t)).

The chain rule gives $\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$ $\frac{dz}{dt} = f_{x}(g(t), h(t)) \cdot g'(t) + f_{y}(g(t), h(t)) \cdot h'(t)$

Function of one variable Suppose y = f(x) and x = g(t). That is, y = f(g(t)). The chain rule gives: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ $\frac{dy}{dt} = f'(g(t)) \cdot g'(t)$ Key idea: You must add contributions

from all dependencies.

Function of several variables Suppose z = f(x, y) and $\begin{cases} x = g(t) \\ y = h(t) \end{cases}$ So z = f(g(t), h(t)). The chain rule gives $\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$ $\frac{dz}{dt} = f_x(g(t), h(t)) \cdot g'(t) +$

 $f_{y}(g(t), h(t)) \cdot h'(t)$

Example. Let $z = x^2y + 3xy^2$, where $x = \sin 2t$, $y = \cos t$. Find $\frac{dz}{dt}$, z'(0). Answer:

Alternatively, we might have z = f(x, y)and x = g(s, t), y = h(s, t). Then $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$.

All dependencies

Alternatively, we might have z = f(x, y)and x = g(s, t), y = h(s, t). Then $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$.

All dependencies

Alternatively, we might have z = f(x, y)and x = g(s, t), y = h(s, t). Then $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$.

Example. Consider $u = x^4y + y^2z^3$ where $x = rse^t$, $y = rs^2e^{-t}$, $z = r^2s(\sin t)$. Find $\frac{\partial u}{\partial s}$.

All dependencies

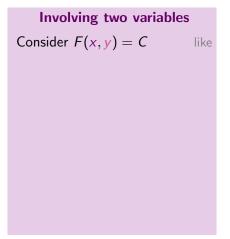
Alternatively, we might have z = f(x, y)and x = g(s, t), y = h(s, t). Then $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$.

Example. Consider
$$u = x^4y + y^2z^3$$
 where $x = rse^t$, $y = rs^2e^{-t}$, $z = r^2s(\sin t)$. Find $\frac{\partial u}{\partial s}$.

In full generality: If *u* is a function of $x_1, x_2, ..., x_n$ and each x_j is a function of $t_1, t_2, ..., t_m$, then $\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_i}.$

Simplify implicit differentiation calculations!

Simplify implicit differentiation calculations!



Simplify implicit differentiation calculations!

Involving two variables

Consider F(x, y) = C like Implicitly y is a function of x: F(x, f(x)) = C

Simplify implicit differentiation calculations!

Involving two variables

Consider F(x, y) = C like Implicitly y is a function of x: F(x, f(x)) = CDifferentiating w.r.t. x: F(x, y) = C $\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$

Simplify implicit differentiation calculations!

Involving two variables

Consider F(x, y) = Clike Implicitly y is a function of x: F(x, f(x)) = CDifferentiating w.r.t. x: F(x, y) = C $\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0$ Solving for $\frac{dy}{dx}$ gives $\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$

Simplify implicit differentiation calculations!

Involving two variables

Consider F(x, y) = CImplicitly y is a function of x: F(x, f(x)) = CDifferentiating w.r.t. x: F(x, y) = C $\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0$ Solving for $\frac{dy}{dx}$ gives $\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$

Involving three variables

like Consider F(x, y, z) = CImplicitly z is a function of x and y: F(x, y, f(x, y)) = C

Simplify implicit differentiation calculations!

Involving two variables

Consider F(x, y) = CImplicitly y is a function of x: F(x, f(x)) = CDifferentiating w.r.t. x: F(x, y) = C $\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0$ Solving for $\frac{dy}{dy}$ gives $\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$

like Consider F(x, y, z) = CImplicitly z is a function of x and y: F(x, y, f(x, y)) = CDifferentiating w.r.t. x: F(x, y, z) = C $\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial y} \frac{dy}{dx} + \frac{\partial F}{\partial z} \frac{dz}{dx} = 0$

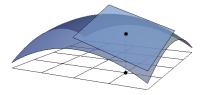
Simplify implicit differentiation calculations!

Involving two variables Consider F(x, y) = CImplicitly y is a function of x: F(x, f(x)) = CDifferentiating w.r.t. x: F(x, y) = C $\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0$ Solving for $\frac{dy}{dy}$ gives $\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$

Example. Find $\frac{\partial z}{\partial x}$ if $x^3 + y^2 + z^3 + 6xyz = 1$

Involving three variables like Consider F(x, y, z) = CImplicitly z is a function of x and y: F(x, y, f(x, y)) = CDifferentiating w.r.t. x: F(x, y, z) = C $\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} + \frac{\partial F}{\partial z}\frac{dz}{dx} = 0$ Solving for $\frac{\partial z}{\partial x}$ gives $\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial x}}$

Partial derivatives allow us to see how fast a function changes. $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction.



Partial derivatives allow us to see how fast a function changes. $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction.

Question: How fast is f(x, y) changing in some other direction?

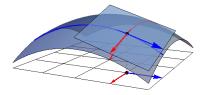
Partial derivatives allow us to see how fast a function changes. $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction.

Question: How fast is f(x, y) changing in some other direction? What does that even mean?

Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. Toward $\vec{i} = (1, 0)$ $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction. Toward $\vec{j} = (0, 1)$

Question: How fast is f(x, y) changing in **some other direction**? What does that even mean?

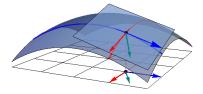


Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. Toward $\vec{i} = (1, 0)$ $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction. Toward $\vec{j} = (0, 1)$

Question: How fast is f(x, y) changing in **some other direction**? What does that even mean?

Question: What is the rate of change of f toward *unit vector* $\vec{u} = (a, b) = (\cos \theta, \sin \theta)$?

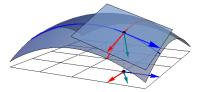


Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. Toward $\vec{i} = (1, 0)$ $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction. Toward $\vec{j} = (0, 1)$

Question: How fast is f(x, y) changing in **some other direction**? What does that even mean?

Question: What is the rate of change of f toward *unit vector* $\vec{\mathbf{u}} = (a, b) = (\cos \theta, \sin \theta)$?



Definition: The directional derivative of f in the direction of \vec{u} is

$$D_{\vec{u}}f(x,y) = f_x(x,y) a + f_y(x,y) b.$$

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Answer: First, find the vector $\vec{\mathbf{u}} =$

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Answer: First, find the vector $\vec{u} =$ Next, find the partial derivatives:

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Answer: First, find the vector $\vec{u} =$ Next, find the partial derivatives:

 $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$

We conclude that $D_{\vec{u}}f(x,y) =$

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Answer: First, find the vector $\vec{u} =$ Next, find the partial derivatives:

 $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$ We conclude that $D_{\vec{u}}f(x,y) =$

Example. Calculate $D_{\vec{u}}f(1,2)$ and interpret this answer.

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Answer: First, find the vector $\vec{u} =$ Next, find the partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$$

We conclude that $D_{ii}f(x,y) =$

Example. Calculate $D_{\vec{u}}f(1,2)$ and interpret this answer.

$$D_{\vec{u}}f(1,2) = (3 \cdot 1 - 3 \cdot 2)\frac{\sqrt{3}}{2} + (-3 \cdot 1 + 8 \cdot 2)\frac{1}{2}$$
$$= \frac{13 - 2\sqrt{3}}{2} \approx 3.9$$

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Answer: First, find the vector $\vec{u} =$ Next, find the partial derivatives:

$$rac{\partial f}{\partial x} = rac{\partial f}{\partial y} =$$

We conclude that $D_{\vec{u}}f(x,y) =$

Example. Calculate $D_{\vec{u}}f(1,2)$ and interpret this answer.

$$\begin{aligned} D_{\vec{u}}f(1,2) &= (3\cdot 1 - 3\cdot 2)\frac{\sqrt{3}}{2} + (-3\cdot 1 + 8\cdot 2)\frac{1}{2} \\ &= \frac{13 - 2\sqrt{3}}{2} \approx 3.9 \end{aligned}$$

Interpretation: One unit step in the \vec{u} direction increases f(x, y) by approximately 3.9 units.