Motivating the gradient

Notice that $D_{\vec{\mathbf{u}}}f = f_{\mathbf{x}}\mathbf{a} + f_{\mathbf{y}}\mathbf{b}$.

Rewrite as: $D_{\vec{\mathbf{u}}}f = \langle f_x, f_y \rangle \cdot \langle a, b \rangle$.

Definition: The vector $\langle f_x, f_y \rangle = f_x \vec{\mathbf{i}} + f_y \vec{\mathbf{j}}$ is called the **gradient** of f. We write ∇f or grad f.

So an alternate way to write $D_{\vec{\mathbf{u}}}f(x,y)$ is $\nabla f(x,y) \cdot \vec{\mathbf{u}}$.

The gradient is also defined for functions of more than two variables. For example, for a function of three variables, f(x, y, z),

$$abla f = \langle f_x, f_y, f_z \rangle = f_x \, \vec{\mathbf{i}} + f_y \, \vec{\mathbf{j}} + f_z \, \vec{\mathbf{k}}$$
and $D_{\vec{\mathbf{u}}} f = \nabla f \cdot \vec{\mathbf{u}}$

Applying ∇f

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1, 3, 0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Game Plan:

- ightharpoonup Find a unit vector in the direction of $\vec{\mathbf{v}}$.
- Find ∇f , plug in (1,3,0).
- ► Take the dot product.

Therefore $D_{\vec{\mathbf{u}}}f(1,3,0) =$

Interpretation?

An important interpretation of the gradient

Question: Given a function f(x,y) and a point (x_0,y_0) , (or a function f(x,y,z) and a point (x_0,y_0,z_0)), in which direction is the function increasing the fastest? And how fast is the function increasing in that direction?

Answer: At a rate of $|\nabla f(x_0, y_0)|$, in the direction of $\nabla f(x_0, y_0)$!!

But why?!?
$$D_{\vec{\mathbf{u}}}f = \nabla f \cdot \vec{\mathbf{u}} = |\nabla f| |\vec{\mathbf{u}}| \cos(\theta)$$
$$= |\nabla f| \cos(\theta)$$

Question: For what angle θ is this maximized? And what is the max? Answer:

Consequence: ∇f represents the direction of fastest increase of f.

Visualization of the gradient

 ∇f represents the direction of fastest increase of f.

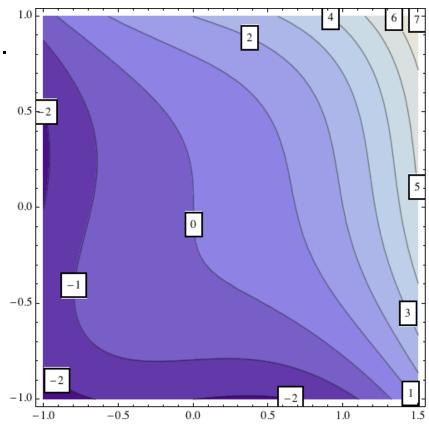
We can understand this graphically through the contour map.

At (x_0, y_0) , the vector $\nabla f(x_0, y_0)$ is perpendicular to the level curves of f.

Why?

- ightharpoonup Along a level curve, f is constant.
- ► The fastest change should be perpendicular to the level curve.
- \heartsuit Connecting along this path gives \heartsuit
- \heartsuit the path of steepest ascent. \heartsuit

Chloe says "hi".



Tangent planes to level surfaces

Functions of two variables

A level curve f(x, y) = c

 $\nabla f \longleftrightarrow$ fastest increase

So: ∇f is \perp (to tangent line) to level curve at (x_0, y_0)

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow$ fastest increase so ∇F is \bot (to tangent plane) to level surface at (x_0, y_0, z_0)

 $\nabla F(x_0, y_0, z_0)$ is the **normal vector** to the level surface at (x_0, y_0, z_0) .

This means: The equation of THE tangent plane to THE level surface passing through the point (x_0, y_0, z_0) is

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Also: For any curve $\vec{r}(t) = (x(t), y(t), z(t))$ on the level surface,

$$F(x(t),y(t),z(t))=k \quad \stackrel{\mathsf{chain}}{\Longrightarrow} \quad \frac{\partial F}{\partial x}\frac{dx}{dt}+\frac{\partial F}{\partial y}\frac{dy}{dt}+\frac{\partial F}{\partial z}\frac{dz}{dt}=0,$$

which means $\nabla F \perp \vec{\mathbf{r}}'(t) = 0$.