Motivating the gradient

Notice that $D_{\overrightarrow{\mathbf{u}}} f=f_{x} a+f_{y} b$.

Motivating the gradient

Notice that $D_{\vec{u}} f=f_{x} a+f_{y} b$.
Rewrite as: $D_{\overrightarrow{\mathrm{u}}} f=\left\langle f_{x}, f_{y}\right\rangle \cdot\langle a, b\rangle$.

Motivating the gradient

Notice that $D_{\overrightarrow{\mathrm{u}}} f=f_{x} a+f_{y} b$.
Rewrite as: $D_{\overrightarrow{\mathrm{u}}} f=\left\langle f_{x}, f_{y}\right\rangle \cdot\langle a, b\rangle$.
Definition: The vector $\left\langle f_{x}, f_{y}\right\rangle=f_{x} \overrightarrow{\mathbf{i}}+f_{y} \overrightarrow{\mathbf{j}}$ is called the gradient of f. We write ∇f or grad f.

Motivating the gradient

Notice that $D_{\overrightarrow{\mathrm{u}}} f=f_{x} a+f_{y} b$.
Rewrite as: $D_{\overrightarrow{\mathrm{u}}} f=\left\langle f_{x}, f_{y}\right\rangle \cdot\langle a, b\rangle$.
Definition: The vector $\left\langle f_{x}, f_{y}\right\rangle=f_{x} \overrightarrow{\mathbf{i}}+f_{y} \overrightarrow{\mathbf{j}}$ is called the gradient of f. We write ∇f or grad f.

So an alternate way to write $D_{\overrightarrow{\mathbf{u}}} f(x, y)$ is $\nabla f(x, y) \cdot \overrightarrow{\mathbf{u}}$.

Motivating the gradient

Notice that $D_{\overrightarrow{\mathrm{u}}} f=f_{x} a+f_{y} b$.
Rewrite as: $D_{\overrightarrow{\mathrm{u}}} f=\left\langle f_{x}, f_{y}\right\rangle \cdot\langle a, b\rangle$.
Definition: The vector $\left\langle f_{x}, f_{y}\right\rangle=f_{x} \overrightarrow{\mathbf{i}}+f_{y} \overrightarrow{\mathbf{j}}$ is called the gradient of f. We write ∇f or grad f.
So an alternate way to write $D_{\overrightarrow{\mathbf{u}}} f(x, y)$ is $\nabla f(x, y) \cdot \overrightarrow{\mathbf{u}}$.

The gradient is also defined for functions of more than two variables. For example, for a function of three variables, $f(x, y, z)$,

$$
\begin{gathered}
\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=f_{x} \overrightarrow{\mathbf{i}}+f_{y} \overrightarrow{\mathbf{j}}+f_{z} \overrightarrow{\mathbf{k}} \\
\text { and } D_{\overrightarrow{\mathbf{u}}} f=\nabla f \cdot \overrightarrow{\mathbf{u}}
\end{gathered}
$$

Applying ∇f

Example. Let $f(x, y, z)=x \sin (y z)$. Find the directional derivative of f at $(1,3,0)$ in the direction $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}}$.

Applying ∇f

Example. Let $f(x, y, z)=x \sin (y z)$. Find the directional derivative of f at $(1,3,0)$ in the direction $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}}$.

Step back. What do we want to calculate?

Applying ∇f

Example. Let $f(x, y, z)=x \sin (y z)$. Find the directional derivative of f at $(1,3,0)$ in the direction $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}}$.

Step back. What do we want to calculate?
Game Plan:

- Find a unit vector in the direction of $\overrightarrow{\mathbf{v}}$.

Applying ∇f

Example. Let $f(x, y, z)=x \sin (y z)$. Find the directional derivative of f at $(1,3,0)$ in the direction $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}}$.

Step back. What do we want to calculate?
Game Plan:

- Find a unit vector in the direction of $\overrightarrow{\mathbf{v}}$.
- Find ∇f, plug in $(1,3,0)$.

Applying ∇f

Example. Let $f(x, y, z)=x \sin (y z)$. Find the directional derivative of f at $(1,3,0)$ in the direction $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}}$.

Step back. What do we want to calculate?
Game Plan:

- Find a unit vector in the direction of $\overrightarrow{\mathbf{v}}$.
- Find ∇f, plug in $(1,3,0)$.
- Take the dot product.

Applying ∇f

Example. Let $f(x, y, z)=x \sin (y z)$. Find the directional derivative of f at $(1,3,0)$ in the direction $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}}$.

Step back. What do we want to calculate?
Game Plan:

- Find a unit vector in the direction of $\overrightarrow{\mathbf{v}}$.
- Find ∇f, plug in $(1,3,0)$.
- Take the dot product.

Therefore $D_{\overrightarrow{\mathrm{u}}} f(1,3,0)=$

Applying ∇f

Example. Let $f(x, y, z)=x \sin (y z)$. Find the directional derivative of f at $(1,3,0)$ in the direction $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}}$.

Step back. What do we want to calculate?
Game Plan:

- Find a unit vector in the direction of $\overrightarrow{\mathbf{v}}$.
- Find ∇f, plug in $(1,3,0)$.
- Take the dot product.

Therefore $D_{\overrightarrow{\mathrm{u}}} f(1,3,0)=$

Interpretation?

An important interpretation of the gradient

Question: Given a function $f(x, y)$ and a point $\left(x_{0}, y_{0}\right)$,
in which direction is the function increasing the fastest?

An important interpretation of the gradient

Question: Given a function $f(x, y)$ and a point $\left(x_{0}, y_{0}\right)$, (or a function $f(x, y, z)$ and a point $\left(x_{0}, y_{0}, z_{0}\right)$), in which direction is the function increasing the fastest?

An important interpretation of the gradient

Question: Given a function $f(x, y)$ and a point $\left(x_{0}, y_{0}\right)$, (or a function $f(x, y, z)$ and a point $\left(x_{0}, y_{0}, z_{0}\right)$), in which direction is the function increasing the fastest?
And how fast is the function increasing in that direction?

An important interpretation of the gradient

Question: Given a function $f(x, y)$ and a point $\left(x_{0}, y_{0}\right)$, (or a function $f(x, y, z)$ and a point $\left(x_{0}, y_{0}, z_{0}\right)$), in which direction is the function increasing the fastest?
And how fast is the function increasing in that direction?
Answer: At a rate of $\left|\nabla f\left(x_{0}, y_{0}\right)\right|$, in the direction of $\nabla f\left(x_{0}, y_{0}\right)!$!

An important interpretation of the gradient

Question: Given a function $f(x, y)$ and a point $\left(x_{0}, y_{0}\right)$, (or a function $f(x, y, z)$ and a point $\left(x_{0}, y_{0}, z_{0}\right)$), in which direction is the function increasing the fastest?
And how fast is the function increasing in that direction?
Answer: At a rate of $\left|\nabla f\left(x_{0}, y_{0}\right)\right|$, in the direction of $\nabla f\left(x_{0}, y_{0}\right)$!!

But why?!?

An important interpretation of the gradient

Question: Given a function $f(x, y)$ and a point $\left(x_{0}, y_{0}\right)$, (or a function $f(x, y, z)$ and a point $\left(x_{0}, y_{0}, z_{0}\right)$), in which direction is the function increasing the fastest?
And how fast is the function increasing in that direction?
Answer: At a rate of $\left|\nabla f\left(x_{0}, y_{0}\right)\right|$, in the direction of $\nabla f\left(x_{0}, y_{0}\right)!$!
But why?!?

$$
\begin{aligned}
D_{\overrightarrow{\mathbf{u}}} f=\nabla f \cdot \overrightarrow{\mathbf{u}} & =|\nabla f||\overrightarrow{\mathbf{u}}| \cos (\theta) \\
& =|\nabla f| \cos (\theta)
\end{aligned}
$$

An important interpretation of the gradient

Question: Given a function $f(x, y)$ and a point $\left(x_{0}, y_{0}\right)$, (or a function $f(x, y, z)$ and a point $\left(x_{0}, y_{0}, z_{0}\right)$), in which direction is the function increasing the fastest?
And how fast is the function increasing in that direction?
Answer: At a rate of $\left|\nabla f\left(x_{0}, y_{0}\right)\right|$, in the direction of $\nabla f\left(x_{0}, y_{0}\right)!$!
But why?!?

$$
\begin{aligned}
D_{\overrightarrow{\mathbf{u}}} f=\nabla f \cdot \overrightarrow{\mathbf{u}} & =|\nabla f||\overrightarrow{\mathbf{u}}| \cos (\theta) \\
& =|\nabla f| \cos (\theta)
\end{aligned}
$$

Question: For what angle θ is this maximized? And what is the max?
Answer:

An important interpretation of the gradient

Question: Given a function $f(x, y)$ and a point $\left(x_{0}, y_{0}\right)$, (or a function $f(x, y, z)$ and a point $\left(x_{0}, y_{0}, z_{0}\right)$), in which direction is the function increasing the fastest?
And how fast is the function increasing in that direction?
Answer: At a rate of $\left|\nabla f\left(x_{0}, y_{0}\right)\right|$, in the direction of $\nabla f\left(x_{0}, y_{0}\right)!$!
But why?!?

$$
\begin{aligned}
D_{\overrightarrow{\mathbf{u}}} f=\nabla f \cdot \overrightarrow{\mathbf{u}} & =|\nabla f||\overrightarrow{\mathbf{u}}| \cos (\theta) \\
& =|\nabla f| \cos (\theta)
\end{aligned}
$$

Question: For what angle θ is this maximized? And what is the max? Answer:

Consequence: ∇f represents the direction of fastest increase of f.

Visualization of the gradient

∇f represents the direction of fastest increase of f.
We can understand this graphically through the contour map.

Visualization of the gradient

∇f represents the direction of fastest increase of f.

We can understand this graphically through the contour map.

- At $\left(x_{0}, y_{0}\right)$, the vector $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the level curves of f.

Visualization of the gradient

∇f represents the direction of fastest increase of f.
We can understand this graphically through the contour map.

- At $\left(x_{0}, y_{0}\right)$, the vector $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the level curves of f.

Why?

- Along a level curve, f is constant.
- The fastest change should be perpendicular to the level curve.

Visualization of the gradient

∇f represents the direction of fastest increase of f.
We can understand this graphically through the contour map.

- At $\left(x_{0}, y_{0}\right)$, the vector $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the level curves of f.

Why?

- Along a level curve, f is constant.
- The fastest change should be perpendicular to the level curve.
\bigcirc Connecting along this path gives
\bigcirc the path of steepest ascent. Chloe says "hi".

Tangent planes to level surfaces

Functions of two variables

A level curve $f(x, y)=c$

Functions of three variables
A level surface $F(x, y, z)=c$

Tangent planes to level surfaces

Functions of two variables
A level curve $f(x, y)=c$
$\nabla f \longleftrightarrow$ fastest increase

Functions of three variables
A level surface $F(x, y, z)=c$
$\nabla F \longleftrightarrow$ fastest increase

Tangent planes to level surfaces

Functions of two variables
A level curve $f(x, y)=c$
$\nabla f \longleftrightarrow$ fastest increase
So: ∇f is \perp
to level curve at $\left(x_{0}, y_{0}\right)$

Functions of three variables
A level surface $F(x, y, z)=c$
$\nabla F \longleftrightarrow$ fastest increase
so ∇F is \perp
to level surface at $\left(x_{0}, y_{0}, z_{0}\right)$

Tangent planes to level surfaces

Functions of two variables
A level curve $f(x, y)=c$
$\nabla f \longleftrightarrow$ fastest increase
So: ∇f is \perp (to tangent line) to level curve at $\left(x_{0}, y_{0}\right)$

Functions of three variables
A level surface $F(x, y, z)=c$
$\nabla F \longleftrightarrow$ fastest increase
so ∇F is \perp (to tangent plane)
to level surface at $\left(x_{0}, y_{0}, z_{0}\right)$

Tangent planes to level surfaces

Functions of two variables

A level curve $f(x, y)=c$
$\nabla f \longleftrightarrow$ fastest increase
So: ∇f is \perp (to tangent line) to level curve at $\left(x_{0}, y_{0}\right)$

Functions of three variables
A level surface $F(x, y, z)=c$
$\nabla F \longleftrightarrow$ fastest increase
so ∇F is \perp (to tangent plane) to level surface at $\left(x_{0}, y_{0}, z_{0}\right)$
$\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is the normal vector to the level surface at $\left(x_{0}, y_{0}, z_{0}\right)$.

Tangent planes to level surfaces

Functions of two variables

A level curve $f(x, y)=c$
$\nabla f \longleftrightarrow$ fastest increase
So: ∇f is \perp (to tangent line) to level curve at $\left(x_{0}, y_{0}\right)$

Functions of three variables

A level surface $F(x, y, z)=c$
$\nabla F \longleftrightarrow$ fastest increase so ∇F is \perp (to tangent plane) to level surface at $\left(x_{0}, y_{0}, z_{0}\right)$
$\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is the normal vector to the level surface at $\left(x_{0}, y_{0}, z_{0}\right)$.
This means: The equation of THE tangent plane to
THE level surface passing through the point $\left(x_{0}, y_{0}, z_{0}\right)$ is
$F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0$.

Tangent planes to level surfaces

Functions of two variables

A level curve $f(x, y)=c$
$\nabla f \longleftrightarrow$ fastest increase
So: ∇f is \perp (to tangent line) to level curve at $\left(x_{0}, y_{0}\right)$

Functions of three variables

A level surface $F(x, y, z)=c$
$\nabla F \longleftrightarrow$ fastest increase so ∇F is \perp (to tangent plane) to level surface at $\left(x_{0}, y_{0}, z_{0}\right)$
$\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is the normal vector to the level surface at $\left(x_{0}, y_{0}, z_{0}\right)$.
This means: The equation of THE tangent plane to
THE level surface passing through the point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0 .
$$

Also: For any curve $\overrightarrow{\mathbf{r}}(t)=(x(t), y(t), z(t))$ on the level surface,

$$
F(x(t), y(t), z(t))=k
$$

Tangent planes to level surfaces

Functions of two variables

A level curve $f(x, y)=c$
$\nabla f \longleftrightarrow$ fastest increase
So: ∇f is \perp (to tangent line) to level curve at $\left(x_{0}, y_{0}\right)$

Functions of three variables

A level surface $F(x, y, z)=c$
$\nabla F \longleftrightarrow$ fastest increase so ∇F is \perp (to tangent plane) to level surface at $\left(x_{0}, y_{0}, z_{0}\right)$
$\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is the normal vector to the level surface at $\left(x_{0}, y_{0}, z_{0}\right)$.
This means: The equation of THE tangent plane to
THE level surface passing through the point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0 .
$$

Also: For any curve $\overrightarrow{\mathbf{r}}(t)=(x(t), y(t), z(t))$ on the level surface,

$$
F(x(t), y(t), z(t))=k \quad \stackrel{\text { chain }}{\Longrightarrow} \frac{\partial F}{\partial x} \frac{d x}{d t}+\frac{\partial F}{\partial y} \frac{d y}{d t}+\frac{\partial F}{\partial z} \frac{d z}{d t}=0
$$

Tangent planes to level surfaces

Functions of two variables

A level curve $f(x, y)=c$
$\nabla f \longleftrightarrow$ fastest increase
So: ∇f is \perp (to tangent line) to level curve at $\left(x_{0}, y_{0}\right)$

Functions of three variables

A level surface $F(x, y, z)=c$
$\nabla F \longleftrightarrow$ fastest increase so ∇F is \perp (to tangent plane) to level surface at $\left(x_{0}, y_{0}, z_{0}\right)$
$\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is the normal vector to the level surface at $\left(x_{0}, y_{0}, z_{0}\right)$.
This means: The equation of THE tangent plane to
THE level surface passing through the point $\left(x_{0}, y_{0}, z_{0}\right)$ is
$F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0$.
Also: For any curve $\overrightarrow{\mathbf{r}}(t)=(x(t), y(t), z(t))$ on the level surface,

$$
F(x(t), y(t), z(t))=k \quad \stackrel{\text { chain }}{\Longrightarrow} \frac{\partial F}{\partial x} \frac{d x}{d t}+\frac{\partial F}{\partial y} \frac{d y}{d t}+\frac{\partial F}{\partial z} \frac{d z}{d t}=0
$$

which means $\nabla F \perp \overrightarrow{\mathbf{r}}^{\prime}(t)=0$.

