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Motivating the gradient

Notice that D;f = fia+ f,b.
Rewrite as: Dyf = (fi, f,) - (a, b).

Definition: The vector (f,, f,) = fiol + f;,fis called the gradient of f.
We write V' or grad f.

So an alternate way to write Dzf(x,y) is Vi(x,y) - u

The gradient is also defined for functions of more than two variables.
For example, for a function of three variables, f(x, y, z),

and Dzf = V£ -u



Directional Derivatives — §11.6
Applying Vf

Example. Let f(x,y,z) = xsin(yz). Find the directional derivative
i

of f at (1,3,0) in the direction V =i + 2j — k.
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Applying Vf

Example. Let f(x,y,z) = xsin(yz). Find the directional derivative
of f at (1,3,0) in the direction Vv =i+ 2j — k.

Step back. What do we want to calculate?

Game Plan:

» Find a unit vector in the direction of V.
» Find V£, plug in (1,3,0).
» Take the dot product.

Therefore D;f(1,3,0) =

Interpretation?
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An important interpretation of the gradient

Question: Given a function f(x,y) and a point (xo, o),

in which direction is the function increasing the fastest?
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An important interpretation of the gradient

Question: Given a function f(x,y) and a point (xo, o),

(or a function f(x,y, z) and a point (xo, Y0, 20)),
in which direction is the function increasing the fastest?
And how fast is the function increasing in that direction?
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An important interpretation of the gradient

Question: Given a function f(x,y) and a point (xo, o),
(or a function f(x,y, z) and a point (xo, Y0, 20)),
in which direction is the function increasing the fastest?
And how fast is the function increasing in that direction?

Answer: At a rate of |Vf(xo, y0)|, in the direction of Vf(xp, yo)!!
Dgf = Vf -u = |Vf]||u] cos(6)

But why?!?

y — |Vf] cos(0)
Question: For what angle 0 is this maximized? And what is the max?
Answer:

Consequence: Vf represents the direction of fastest increase of f.
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Visualization of the gradient

Vf represents the direction of fastest increase of f.

We can understand this graphically through the contour map.
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perpendicular to the level curves of f.
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> Along a level curve, f is constant.

» The fastest change should be o
perpendicular to the level curve.
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Visualization of the gradient

Vf represents the direction of fastest increase of f.

We can understand this graphically through the contour map.

> At (xo,y0), the vector Vf(xo,y0) is .,
perpendicular to the level curves of f.
Why?
> Along a level curve, f is constant.

» The fastest change should be
perpendicular to the level curve.

05

(7 Connecting along this path gives © ™
(O the path of steepest ascent. ©
Chloe says “hi".
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Tangent planes to level surfaces

Functions of two variables

A level curve f(x,y) = ¢

Functions of three variables

A level surface F(x,y,z) =c

80



Directional Derivatives — §11.6 80
Tangent planes to level surfaces

Functions of two variables Functions of three variables

A level curve f(x,y) = c A level surface F(x,y,z) = c

Vf +— fastest increase VF <— fastest increase



Directional Derivatives — §11.6 80

Tangent planes to level surfaces

Functions of two variables Functions of three variables
A level curve f(x,y) = ¢ A level surface F(x,y,z) =c
Vf +— fastest increase VF <— fastest increase
So: Vfis L so VF is L

to level curve at (xo, y0) to level surface at (xo, yo, 20)



Directional Derivatives — §11.6 80

Tangent planes to level surfaces

Functions of two variables Functions of three variables
A level curve f(x,y) = ¢ A level surface F(x,y,z) =c
Vf +— fastest increase VF <— fastest increase
So: Vf is L (to tangent line) so VF is L (to tangent plane)

to level curve at (xo, y0) to level surface at (xo, yo, 20)



Directional Derivatives — §11.6 80

Tangent planes to level surfaces

Functions of two variables Functions of three variables
A level curve f(x,y) = c¢ A level surface F(x,y,z) = c
Vi <— fastest increase VF <— fastest increase
So: Vf is L (to tangent line) so VF is L (to tangent plane)
to level curve at (xo, y0) to level surface at (xo, yo, 20)

V F(xo, Yo, 20) is the normal vector to the level surface at (x, yo, 20)-



Directional Derivatives — §11.6 80

Tangent planes to level surfaces

Functions of two variables Functions of three variables
A level curve f(x,y) = c¢ A level surface F(x,y,z) = c
VI <— fastest increase VF <— fastest increase
So: Vf is L (to tangent line) so VF is L (to tangent plane)
to level curve at (xo, y0) to level surface at (xo, yo, 20)

V F(xo, Yo, 20) is the normal vector to the level surface at (x, yo, 20)-

This means: The equation of THE tangent plane to
THE level surface passing through the point (xo, yo, 20) is

Fx(x0, Y0, 20)(x — x0) + Fy(x0, Y0, 20)(y¥ — ¥0) + Fz(x0, 0, 20)(z — 20) = 0.



Directional Derivatives — §11.6 80

Tangent planes to level surfaces

Functions of two variables Functions of three variables
A level curve f(x,y) = c¢ A level surface F(x,y,z) = c
VI <— fastest increase VF <— fastest increase
So: Vf is L (to tangent line) so VF is L (to tangent plane)
to level curve at (xo, y0) to level surface at (xo, yo, 20)

V F(xo, Yo, 20) is the normal vector to the level surface at (x, yo, 20)-

This means: The equation of THE tangent plane to
THE level surface passing through the point (xo, yo, 20) is

Fx(x0, Y0, 20)(x — x0) + Fy(x0, Y0, 20)(y¥ — ¥0) + Fz(x0, 0, 20)(z — 20) = 0.

Also: For any curve r(t) = (x(t), y(t), z(t)) on the level surface,

F(X(t),y(t), z(t)) =k



Directional Derivatives — §11.6 80

Tangent planes to level surfaces
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Tangent planes to level surfaces

Functions of two variables Functions of three variables
A level curve f(x,y) = c¢ A level surface F(x,y,z) = c
VI <— fastest increase VF <— fastest increase
So: Vf is L (to tangent line) so VF is L (to tangent plane)
to level curve at (xo, y0) to level surface at (xo, yo, 20)

V F(xo, Yo, 20) is the normal vector to the level surface at (x, yo, 20)-

This means: The equation of THE tangent plane to
THE level surface passing through the point (xo, yo, 20) is

Fx(x0, Y0, 20)(x — x0) + Fy(x0, Y0, 20)(y¥ — ¥0) + Fz(x0, 0, 20)(z — 20) = 0.

Also: For any curve r(t) = (x(t), y(t), z(t)) on the level surface,
chain Ix d F dz
F(x(t),y(t),2(t) =k = 25%4—%5 F+EE=0,

which means VF L¥/(t)=0.
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