```
f(x) has a local maximum at x = a if
```

```
f(x) has a local maximum at x = a if for all points x near a, f(x) \le a.
```

```
f(x) has a local maximum at x = a if for all points x near a, f(x) \le a. f(x) has a local minimum at x = a if for all points x near a, f(x) \ge a.
```

Local and Global Extrema (Relative and Absolute)

```
f(x) has a local maximum at x = a if for all points x near a, f(x) \le a. f(x) has a local minimum at x = a if for all points x near a, f(x) \ge a.
```

If f(x) has a local max or local min at x = a, then

```
f(x) has a local maximum at x = a if for all points x near a, f(x) \le a.

f(x) has a local minimum at x = a if for all points x near a, f(x) \ge a.

If f(x) has a local max or local min at x = a, then f'(a) = 0 or f'(a) does not exist.

This is called a critical point. (pics!)
```

```
f(x) has a local maximum at x = a
 if for all points x near a, f(x) \le a.
f(x) has a local minimum at x = a
 if for all points x near a, f(x) \ge a.
If f(x) has a local max or local min at x = a,
then f'(a) = 0 or f'(a) does not exist.
This is called a critical point. (pics!)
However, If f'(a) = 0 or f'(a) DNE
then this does not imply that x = a
has a local max or a local min. (pics!)
```

Local and Global Extrema (Relative and Absolute)

```
f(x) has a local maximum at x = a
 if for all points x near a, f(x) \le a.
f(x) has a local minimum at x = a
 if for all points x near a, f(x) \ge a.
If f(x) has a local max or local min at x = a,
then f'(a) = 0 or f'(a) does not exist.
This is called a critical point. (pics!)
However, If f'(a) = 0 or f'(a) DNE
then this does not imply that x = a
has a local max or a local min. (pics!)
Extreme Value Theorem: If f is continuous on
```

a closed interval (meaning: _____), then f(x) attains its absolute max and absolute min somewhere on this interval.

Local and Global Extrema (Relative and Absolute)

```
f(x) has a local maximum at x = a
 if for all points x near a, f(x) \le a.
f(x) has a local minimum at x = a
 if for all points x near a, f(x) \ge a.
If f(x) has a local max or local min at x = a,
then f'(a) = 0 or f'(a) does not exist.
This is called a critical point. (pics!)
However, If f'(a) = 0 or f'(a) DNE
then this does not imply that x = a
has a local max or a local min. (pics!)
Extreme Value Theorem: If f is continuous on
```

a closed interval (meaning: ______), closed & bounded then f(x) attains its absolute max and absolute min somewhere on this interval.

Determining relative extrema

Important vocabulary:

- A maximum or minimum: means
- ► A maximum value or minimum value: means _____.

Determining relative extrema

Important vocabulary:

- A maximum or minimum: means ______.
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

Determining relative extrema

Important vocabulary:

- ► A maximum or minimum: means .
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - (f_{xy}(a,b))^2$$

Determining relative extrema

Important vocabulary:

- ► A maximum or minimum: means .
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - \left(f_{xy}(a,b)\right)^2 = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$

Determining relative extrema

Important vocabulary:

- A maximum or minimum: means ______.
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - (f_{xy}(a,b))^{2} = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$

- 1. If D > 0 and $f_{xx} > 0$, then (a, b) is a local minimum.
- 2. If D > 0 and $f_{xx} < 0$, then (a, b) is a local maximum.

Determining relative extrema

Important vocabulary:

- A maximum or minimum: means ______.
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - \left(f_{xy}(a,b)\right)^2 = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$

- 1. If D > 0 and $f_{xx} > 0$, then (a, b) is a local minimum.
- 2. If D > 0 and $f_{xx} < 0$, then (a, b) is a local maximum.
- 3. If D < 0, then (a, b) is a saddle point of f.

Determining relative extrema

Important vocabulary:

- ► A maximum or minimum: means .
- ► A maximum value or minimum value: means _____.

We can try to determine if a critical point is a local extremum using:

The second derivative test.

$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - (f_{xy}(a,b))^{2} = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$

- 1. If D > 0 and $f_{xx} > 0$, then (a, b) is a local minimum.
- 2. If D > 0 and $f_{xx} < 0$, then (a, b) is a local maximum.
- 3. If D < 0, then (a, b) is a saddle point of f.
- 4. If D = 0, the test is inconclusive.

Extreme Examples

Example. Find the local extrema and saddle points of $f(x,y) = x^4 + y^4 - 4xy + 1$.

Extreme Examples

Example. Find the local extrema and saddle points of $f(x, y) = x^4 + y^4 - 4xy + 1$.

Critical points:

Extreme Examples

Example. Find the local extrema and saddle points of $f(x, y) = x^4 + y^4 - 4xy + 1$.

- Critical points:
- ▶ For each: Find D(a, b), classify.

Extreme Examples

Example. Find the local extrema and saddle points of $f(x,y) = x^4 + y^4 - 4xy + 1$.

- Critical points:
- For each: Find D(a, b), classify.

Example. Find the global extrema of $f(x, y) = x^2 - 2xy + 2y$ on the rectangle $0 \le x \le 3$ and $0 \le y \le 2$.

Extreme Examples

Example. Find the local extrema and saddle points of $f(x,y) = x^4 + y^4 - 4xy + 1$.

- Critical points:
- ▶ For each: Find D(a, b), classify.

Example. Find the global extrema of $f(x, y) = x^2 - 2xy + 2y$ on the rectangle $0 \le x \le 3$ and $0 \le y \le 2$.

Critical points on interior

Extreme Examples

Example. Find the local extrema and saddle points of $f(x,y) = x^4 + y^4 - 4xy + 1$.

- Critical points:
- ▶ For each: Find D(a, b), classify.

Example. Find the global extrema of $f(x, y) = x^2 - 2xy + 2y$ on the rectangle $0 \le x \le 3$ and $0 \le y \le 2$.

- Critical points on interior
- Check boundary

Optimization — §11.7

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Example. A rectangular box with no lid is made from $12\,\mathrm{m}^2$ of cardboard. What is the maximum volume of the box? Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize V =______, subject to

Example. A rectangular box with no lice	d is made from 12 m ² of
cardboard. What is the maximum volur	me of the box?
Solution. Let length, width, and height	be x , y , and z , respectively
Then the question asks us to maximize	V = ,
subject to	
Solving for z gives $z = \frac{12-xy}{2x+2y}$.	Inserting, $V = xy(\frac{12-xy}{2x+2y})$

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V = \underline{\hspace{1cm}}$, subject to

Solving for z gives $z = \frac{12-xy}{2x+2y}$.

Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \implies$

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V = \underline{\hspace{1cm}}$, subject to

Solving for z gives $z = \frac{12-xy}{2x+2y}$.

Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

To find an optimum value, solve for $\frac{\partial V}{\partial x} = 0$ and $\frac{\partial V}{\partial x} = 0$.

$$\frac{\partial V}{\partial x} = 0 \rightsquigarrow \\ \frac{\partial V}{\partial y} = 0 \rightsquigarrow$$

Optimization — §11.7

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively.

Then the question asks us to maximize $V = \underline{}$ subject to

Solving for z gives $z = \frac{12-xy}{2x+2y}$.

Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

To find an optimum value, solve for $\frac{\partial V}{\partial x} = 0$ and $\frac{\partial V}{\partial x} = 0$.

$$\frac{\partial V}{\partial x} = 0 \iff \frac{\partial V}{\partial y} = 0 \iff 12 - 2xy - y^2 = 0$$

Solving these simultaneous equations, $12 - 2xy = x^2 = y^2 \Rightarrow x = \pm y$.

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively.

Then the question asks us to maximize V =_____subject to

Solving for z gives $z = \frac{12-xy}{2x+2y}$.

Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

To find an optimum value, solve for $\frac{\partial V}{\partial x} = 0$ and $\frac{\partial V}{\partial x} = 0$.

$$\frac{\partial V}{\partial x} = 0 \iff \frac{\partial V}{\partial y} = 0 \iff 12 - 2xy - y^2 = 0$$

Solving these simultaneous equations, $12-2xy=x^2=y^2 \Rightarrow x=\pm y$. Because this is real world,

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively.

Then the question asks us to maximize $V = \underline{}$ subject to

Solving for z gives $z = \frac{12-xy}{2x+2y}$.

Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

To find an optimum value, solve for $\frac{\partial V}{\partial x} = 0$ and $\frac{\partial V}{\partial x} = 0$.

$$\frac{\partial V}{\partial x} = 0 \iff \frac{\partial V}{\partial y} = 0 \iff 12 - 2xy - y^2 = 0$$

Solving these simultaneous equations, $12-2xy=x^2=y^2 \Rightarrow x=\pm y$. Because this is real world, , so we solve $12-3x^2=0$: _____ .

Optimization — §11.7

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from 12 m² of cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively.

Then the question asks us to maximize $V = \underline{}$ subject to

Solving for z gives $z = \frac{12-xy}{2x+2y}$. Inserting, $V = xy(\frac{12-xy}{2x+2y})$.

To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$.

$$\frac{\partial x}{\partial y} = 0 \iff \frac{\partial V}{\partial y} = 0 \iff 12 - 2xy - y^2 = 0$$

Solving these simultaneous equations, $12 - 2xy = x^2 = y^2 \Rightarrow x = \pm y$. Because this is real world, , so we solve $12 - 3x^2 = 0$: _ .

This problem must have an absolute maximum, which must occur at a critical point. (Why?) Therefore (x, y, z) = (2, 2, 1) is the absolute maximum, and the maximum volume is xyz = 4.