Local and Global Extrema (Relative and Absolute)

$f(x)$ has a local maximum at $x=a$
if

Local and Global Extrema (Relative and Absolute)

$f(x)$ has a local maximum at $x=a$
if for all points x near $a, f(x) \leq a$.

Local and Global Extrema (Relative and Absolute)

$f(x)$ has a local maximum at $x=a$ if for all points x near a, $f(x) \leq a$.
$f(x)$ has a local minimum at $x=a$ if for all points x near $a, f(x) \geq a$.

Local and Global Extrema (Relative and Absolute)

$f(x)$ has a local maximum at $x=a$
if for all points x near $a, f(x) \leq a$.
$f(x)$ has a local minimum at $x=a$
if for all points x near $a, f(x) \geq a$.
If $f(x)$ has a local max or local min at $x=a$, then

Local and Global Extrema (Relative and Absolute)

$f(x)$ has a local maximum at $x=a$
if for all points x near $a, f(x) \leq a$.
$f(x)$ has a local minimum at $x=a$
if for all points x near $a, f(x) \geq a$.
If $f(x)$ has a local max or local min at $x=a$,
then $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
This is called a critical point. (pics!)

Local and Global Extrema (Relative and Absolute)

$f(x)$ has a local maximum at $x=a$
if for all points x near $a, f(x) \leq a$.
$f(x)$ has a local minimum at $x=a$
if for all points x near $a, f(x) \geq a$.
If $f(x)$ has a local max or local min at $x=a$,
then $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
This is called a critical point. (pics!)
However, If $f^{\prime}(a)=0$ or $f^{\prime}(a)$ DNE then this does not imply that $x=a$ has a local max or a local min. (pics!)

Local and Global Extrema (Relative and Absolute)

$f(x)$ has a local maximum at $x=a$
if for all points x near $a, f(x) \leq a$.
$f(x)$ has a local minimum at $x=a$
if for all points x near $a, f(x) \geq a$.
If $f(x)$ has a local max or local min at $x=a$,
then $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
This is called a critical point. (pics!)
However, If $f^{\prime}(a)=0$ or $f^{\prime}(a)$ DNE then this does not imply that $x=a$ has a local max or a local min. (pics!)

Extreme Value Theorem: If f is continuous on a closed interval (meaning: __), then $f(x)$ attains its absolute max and absolute min somewhere on this interval.

Local and Global Extrema (Relative and Absolute)

$f(x)$ has a local maximum at $x=a$
if for all points x near $a, f(x) \leq a$.
$f(x)$ has a local minimum at $x=a$
if for all points x near $a, f(x) \geq a$.
If $f(x)$ has a local max or local min at $x=a$,
then $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
This is called a critical point. (pics!)
However, If $f^{\prime}(a)=0$ or $f^{\prime}(a)$ DNE then this does not imply that $x=a$ has a local max or a local min. (pics!)

Extreme Value Theorem: If f is continuous on a closed interval (meaning: ___), closed \& bounded then $f(x)$ attains its absolute max and absolute min somewhere on this interval.

Determining relative extrema

Important vocabulary:

- A maximum or minimum: means
- A maximum value or minimum value: means \qquad .

Determining relative extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using: The second derivative test.
If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$,

Determining relative extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using: The second derivative test.
If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then define $D(a, b)$:

$$
D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}
$$

Determining relative extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using: The second derivative test.
If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then define $D(a, b)$:

$$
D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|
$$

Determining relative extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using:

The second derivative test.

If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then define $D(a, b)$:

$$
D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|
$$

1. If $D>0$ and $f_{x x}>0$, then (a, b) is a local minimum.
2. If $D>0$ and $f_{x x}<0$, then (a, b) is a local maximum.

Determining relative extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using:

The second derivative test.

If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then define $D(a, b)$:

$$
D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|
$$

1. If $D>0$ and $f_{x x}>0$, then (a, b) is a local minimum.
2. If $D>0$ and $f_{x x}<0$, then (a, b) is a local maximum.
3. If $D<0$, then (a, b) is a saddle point of f.

Determining relative extrema

Important vocabulary:

- A maximum or minimum: means \qquad .
- A maximum value or minimum value: means \qquad .

We can try to determine if a critical point is a local extremum using:
The second derivative test.
If the second partial derivatives of $f(x, y)$ are continuous around (a, b) And if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then define $D(a, b)$:

$$
D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|
$$

1. If $D>0$ and $f_{x x}>0$, then (a, b) is a local minimum.
2. If $D>0$ and $f_{x x}<0$, then (a, b) is a local maximum.
3. If $D<0$,
4. If $D=0$, then (a, b) is a saddle point of f.
the test is inconclusive.

Extreme Examples

Example. Find the local extrema and saddle points of $f(x, y)=x^{4}+y^{4}-4 x y+1$.

Extreme Examples

Example. Find the local extrema and saddle points of $f(x, y)=x^{4}+y^{4}-4 x y+1$.

- Critical points:

Extreme Examples

Example. Find the local extrema and saddle points of $f(x, y)=x^{4}+y^{4}-4 x y+1$.

- Critical points:
- For each: Find $D(a, b)$, classify.

Extreme Examples

Example. Find the local extrema and saddle points of $f(x, y)=x^{4}+y^{4}-4 x y+1$.

- Critical points:
- For each: Find $D(a, b)$, classify.

Example. Find the global extrema of $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle $0 \leq x \leq 3$ and $0 \leq y \leq 2$.

Extreme Examples

Example. Find the local extrema and saddle points of $f(x, y)=x^{4}+y^{4}-4 x y+1$.

- Critical points:
- For each: Find $D(a, b)$, classify.

Example. Find the global extrema of $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle $0 \leq x \leq 3$ and $0 \leq y \leq 2$.

- Critical points on interior

Extreme Examples

Example. Find the local extrema and saddle points of $f(x, y)=x^{4}+y^{4}-4 x y+1$.

- Critical points:
- For each: Find $D(a, b)$, classify.

Example. Find the global extrema of $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle $0 \leq x \leq 3$ and $0 \leq y \leq 2$.

- Critical points on interior
- Check boundary

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ \qquad subject to \qquad .

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ \qquad subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$.

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ \qquad subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ \qquad subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$ $\frac{\partial V}{\partial y}=0 \rightsquigarrow$

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ subject to \qquad .
Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$ $\frac{\partial V}{\partial y}=0 \rightsquigarrow 12-2 x y-y^{2}=0$
Solving these simultaneous equations, $12-2 x y=x^{2}=y^{2} \Rightarrow x= \pm y$.

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ subject to \qquad .
Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$ $\frac{\partial V}{\partial y}=0 \rightsquigarrow 12-2 x y-y^{2}=0$
Solving these simultaneous equations, $12-2 x y=x^{2}=y^{2} \Rightarrow x= \pm y$. Because this is real world, \qquad

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ subject to \qquad .

Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$ $\frac{\partial V}{\partial y}=0 \rightsquigarrow 12-2 x y-y^{2}=0$
Solving these simultaneous equations, $12-2 x y=x^{2}=y^{2} \Rightarrow x= \pm y$. Because this is real world, \qquad , so we solve $12-3 x^{2}=0$: \qquad .

Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from $12 \mathrm{~m}^{2}$ of cardboard. What is the maximum volume of the box?
Solution. Let length, width, and height be x, y, and z, respectively. Then the question asks us to maximize $V=$ subject to \qquad .
Solving for z gives $z=\frac{12-x y}{2 x+2 y}$. Inserting, $V=x y\left(\frac{12-x y}{2 x+2 y}\right)$.
To find an optimum value, solve for $\frac{\partial V}{\partial x}=0$ and $\frac{\partial V}{\partial x}=0$. $\frac{\partial V}{\partial x}=0 \rightsquigarrow$ $\frac{\partial V}{\partial y}=0 \rightsquigarrow 12-2 x y-y^{2}=0$
Solving these simultaneous equations, $12-2 x y=x^{2}=y^{2} \Rightarrow x= \pm y$. Because this is real world, \qquad , so we solve $12-3 x^{2}=0$: \qquad .
This problem must have an absolute maximum, which must occur at a critical point. (Why?) Therefore $(x, y, z)=(2,2,1)$ is the absolute maximum, and the maximum volume is $x y z=4$.

