
Extrema — §11.7 81

Local and Global Extrema (Relative and Absolute)

f (x) has a local maximum at x = a
if

for all points x near a, f (x) ≤ a.

f (x) has a local minimum at x = a
if for all points x near a, f (x) ≥ a.

If f (x) has a local max or local min at x = a,
then f ′(a) = 0 or f ′(a) does not exist.
This is called a critical point. (pics!)

However, If f ′(a) = 0 or f ′(a) DNE
then this does not imply that x = a
has a local max or a local min. (pics!)

Extreme Value Theorem: If f is continuous on
a closed interval (meaning: ),

closed & bounded

then f (x) attains its absolute max and absolute min
somewhere on this interval.
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Determining relative extrema

Important vocabulary:

I A maximum or minimum: means .

I A maximum value or minimum value: means .

We can try to determine if a critical point is a local extremum using:

The second derivative test.
If the second partial derivatives of f (x , y) are continuous around
(a, b) And if fx(a, b) = 0 and fy (a, b) = 0, then define D(a, b):

D(a, b) = fxx(a, b) · fyy (a, b)−
(
fxy (a, b)

)2
=

∣∣∣∣fxx fxy
fxy fyy

∣∣∣∣
1. If D > 0 and fxx > 0, then (a, b) is a local minimum.

2. If D > 0 and fxx < 0, then (a, b) is a local maximum.

3. If D < 0, then (a, b) is a saddle point of f .

4. If D = 0, the test is inconclusive.
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Extreme Examples

Example. Find the local extrema and saddle points of
f (x , y) = x4 + y4 − 4xy + 1.

I Critical points:

I For each: Find D(a, b), classify.

Example. Find the global extrema of f (x , y) = x2 − 2xy + 2y
on the rectangle 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2.

I Critical points on interior

I Check boundary
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Optimization is just finding maxima and minima

Example. A rectangular box with no lid is made from 12 m2 of
cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x , y , and z , respectively.
Then the question asks us to maximize V = ,
subject to .

Solving for z gives z = 12−xy
2x+2y . Inserting, V = xy

( 12−xy
2x+2y

)
.

To find an optimum value, solve for ∂V
∂x = 0 and ∂V

∂x = 0.
∂V
∂x = 0  
∂V
∂y = 0  12− 2xy − y2 = 0

Solving these simultaneous equations, 12− 2xy = x2 = y2 ⇒ x = ±y .
Because this is real world, , so we solve 12− 3x2 = 0: .

This problem must have an absolute maximum, which must occur
at a critical point. (Why?) Therefore (x , y , z) = (2, 2, 1) is the
absolute maximum, and the maximum volume is xyz = 4.
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