## Riemann Sum Comparison

Riemann sum to approximate area

Subdivide $[a, b]$ into $n$ intervals $I$.

## Riemann Sum Comparison

Riemann sum to approximate area

Subdivide $[a, b]$ into $n$ intervals $I$.
Interval width: $\Delta x_{i}=x_{i}-x_{i-1}$.
Choose sample point $x_{i}^{*}$ in each I

approximates area under curve.

## Riemann Sum Comparison

Riemann sum to approximate area

Subdivide $[a, b]$ into $n$ intervals $I$. Interval width: $\Delta x_{i}=x_{i}-x_{i-1}$.
Choose sample point $x_{i}^{*}$ in each I

approximates area under curve.
Integral is limit of Riemann sums.
$\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$

## Riemann Sum Comparison

Riemann sum to approximate area

Subdivide $[a, b]$ into $n$ intervals $I$. Interval width: $\Delta x_{i}=x_{i}-x_{i-1}$.
Choose sample point $x_{i}^{*}$ in each I $\underset{\text { sum }}{\substack{\text { The } \\ \text { Riemann }}} \quad \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$
approximates area under curve.
Integral is limit of Riemann sums.
$\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$

Riemann Sum to approximate volume (Today: Rectangles $[a, b] \times[c, d]$.)

Subdivide $[a, b]$ into $m$ intervals. Subdivide $[c, d]$ into $n$ intervals.

## Riemann Sum Comparison

Riemann sum to approximate area
Riemann Sum to approximate volume (Today: Rectangles $[a, b] \times[c, d]$.)

Subdivide $[a, b]$ into $n$ intervals $I$. Interval width: $\Delta x_{i}=x_{i}-x_{i-1}$.
Choose sample point $x_{i}^{*}$ in each I $\underset{\substack{\text { The } \\ \text { Rum }}}{\text { Riemann }} \quad \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$
approximates area under curve.
Integral is limit of Riemann sums. $\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$

Subdivide $[c, d]$ into $n$ intervals.
Each subrect. $\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$ has area $\Delta A_{i j}=\Delta x_{i} \Delta y_{j}$.
$\begin{gathered}\text { The } \\ \text { Riemann } \\ \text { sum }\end{gathered}$$\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta A_{i j}$
approximates volume under surface.

## Riemann Sum Comparison

Riemann sum to approximate area
Riemann Sum to approximate volume (Today: Rectangles $[a, b] \times[c, d]$.)

Subdivide $[a, b]$ into $n$ intervals $I$. Interval width: $\Delta x_{i}=x_{i}-x_{i-1}$.
Choose sample point $x_{i}^{*}$ in each I $\underset{\substack{\text { The } \\ \text { Rum }}}{\text { Riemann }} \quad \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$
approximates area under curve.
Integral is limit of Riemann sums.
$\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$

Subdivide $[a, b]$ into $m$ intervals. Subdivide $[c, d]$ into $n$ intervals.
Each subrect. $\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$ has area $\Delta A_{i j}=\Delta x_{i} \Delta y_{j}$.

approximates volume under surface. The double integral is limit of R.S.

$$
\iint_{R} f(x, y) d A=\lim _{\substack{\Delta x_{i} \rightarrow 0 \\ \Delta y_{i} \rightarrow 0}} \underset{\substack{\text { R.S } \\ \text { R. exists) }}}{ }
$$

## Notes and an example

- If $f$ is continuous, the limit always exists!


## Notes and an example

- If $f$ is continuous, the limit always exists!
- The volume under the surface is approximated by adding up the volumes of a bunch of rectangular prisms.


## Notes and an example

- If $f$ is continuous, the limit always exists!
- The volume under the surface is approximated by adding up the volumes of a bunch of rectangular prisms.

Example. Estimate the volume that lies above the square $R=[0,2] \times[0,2]$ and below the surface $z=16-x^{2}-2 y^{2}$ by calculating a Riemann sum with four terms.

## Notes and an example

- If $f$ is continuous, the limit always exists!
- The volume under the surface is approximated by adding up the volumes of a bunch of rectangular prisms.

Example. Estimate the volume that lies above the square $R=[0,2] \times[0,2]$ and below the surface $z=16-x^{2}-2 y^{2}$ by calculating a Riemann sum with four terms.

Answer: The region $R$ can be divided into four squares, each with area $\Delta A=$ $\qquad$ .

## Notes and an example

- If $f$ is continuous, the limit always exists!
- The volume under the surface is approximated by adding up the volumes of a bunch of rectangular prisms.

Example. Estimate the volume that lies above the square $R=[0,2] \times[0,2]$ and below the surface $z=16-x^{2}-2 y^{2}$ by calculating a Riemann sum with four terms.

Answer: The region $R$ can be divided into four squares, each with area $\Delta A=$ $\qquad$ .

Choose a sample point in each region. (Ex: Upper right corner.)

## Notes and an example

- If $f$ is continuous, the limit always exists!
- The volume under the surface is approximated by adding up the volumes of a bunch of rectangular prisms.

Example. Estimate the volume that lies above the square $R=[0,2] \times[0,2]$ and below the surface $z=16-x^{2}-2 y^{2}$ by calculating a Riemann sum with four terms.

Answer: The region $R$ can be divided into four squares, each with area $\Delta A=$ $\qquad$ .

Choose a sample point in each region.
(Ex: Upper right corner.)
Volume $\approx f(1,1) \Delta A_{11}+f(1,2) \Delta A_{12}+f(2,1) \Delta A_{21}+f(2,2) \Delta A_{22}$

## Calculating double integrals

We never calculate a double integral by taking limits of Riemann sums.

## Calculating double integrals

We never calculate a double integral by taking limits of Riemann sums. Instead, we use the method of iterated integrals:
Calculate the volume by adding slices together.

## Calculating double integrals

We never calculate a double integral by taking limits of Riemann sums. Instead, we use the method of iterated integrals:
Calculate the volume by adding slices together.
For a fixed $x$, we can find the area of an
(infinitesimal) slice of $f(x, y)$ by integrating over $y$.

## Calculating double integrals

We never calculate a double integral by taking limits of Riemann sums. Instead, we use the method of iterated integrals:
Calculate the volume by adding slices together.
For a fixed $x$, we can find the area of an
(infinitesimal) slice of $f(x, y)$ by integrating over $y$. Then we can integrate these areas over all slices to give the volume.

## Calculating double integrals

We never calculate a double integral by taking limits of Riemann sums. Instead, we use the method of iterated integrals:
Calculate the volume by adding slices together.
For a fixed $x$, we can find the area of an
(infinitesimal) slice of $f(x, y)$ by integrating over $y$. Then we can integrate these areas over all slices to give the volume.
Area of slice: $A(x)=\int_{y=c}^{y=d} f(x, y) d y$
[Think of $x$ as constant.]

## Calculating double integrals

We never calculate a double integral by taking limits of Riemann sums. Instead, we use the method of iterated integrals:
Calculate the volume by adding slices together.
For a fixed $x$, we can find the area of an
(infinitesimal) slice of $f(x, y)$ by integrating over $y$. Then we can integrate these areas over all slices to give the volume.
Area of slice: $A(x)=\int_{y=c}^{y=d} f(x, y) d y \quad$ [Think of $x$ as constant.]
Volume: $V=\int_{x=a}^{x=b} A(x) d x=\int_{x=a}^{x=b}\left[\int_{y=c}^{y=d} f(x, y) d y\right] d x$.

## Calculating double integrals

We never calculate a double integral by taking limits of Riemann sums. Instead, we use the method of iterated integrals:
Calculate the volume by adding slices together.
For a fixed $x$, we can find the area of an
(infinitesimal) slice of $f(x, y)$ by integrating over $y$. Then we can integrate these areas over all slices to give the volume.
Area of slice: $A(x)=\int_{y=c}^{y=d} f(x, y) d y \quad$ [Think of $x$ as constant.]
Volume: $V=\int_{x=a}^{x=b} A(x) d x=\int_{x=a}^{x=b}\left[\int_{y=c}^{y=d} f(x, y) d y\right] d x$.
We write $\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$.

## Calculating double integrals

We never calculate a double integral by taking limits of Riemann sums. Instead, we use the method of iterated integrals:
Calculate the volume by adding slices together.
For a fixed $x$, we can find the area of an
(infinitesimal) slice of $f(x, y)$ by integrating over $y$. Then we can integrate these areas over all slices to give the volume.
Area of slice: $A(x)=\int_{y=c}^{y=d} f(x, y) d y \quad$ [Think of $x$ as constant.]
Volume: $V=\int_{x=a}^{x=b} A(x) d x=\int_{x=a}^{x=b}\left[\int_{y=c}^{y=d} f(x, y) d y\right] d x$.
We write $\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$.
The order of the $d y$ and $d x$ tells you which to integrate first. Work from the inside out.

## Fubini's Theorem

If $f$ is continuous on the rectangle $R=[a, b] \times[c, d]$ then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

## Fubini's Theorem

If $f$ is continuous on the rectangle $R=[a, b] \times[c, d]$ then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Also true in general if

- $f$ is bounded on $R$
- $f$ discontinuous only on a finite number of smooth curves
- the iterated integrals exist


## Fubini's Theorem

If $f$ is continuous on the rectangle $R=[a, b] \times[c, d]$ then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Also true in general if

- $f$ is bounded on $R$
- $f$ discontinuous only on a finite number of smooth curves
- the iterated integrals exist

Intuition: In our picture, we could have sliced the volume by fixing $y$ instead of $x$.

## Fubini's Theorem

If $f$ is continuous on the rectangle $R=[a, b] \times[c, d]$ then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Also true in general if

- $f$ is bounded on $R$
- $f$ discontinuous only on a finite number of smooth curves
- the iterated integrals exist

Intuition: In our picture, we could have sliced the volume by fixing $y$ instead of $x$.

Take away message: When $f$ is nice, we can choose the order of integration to make our life easier.

## Double integrals

Example. Find $\iint_{R} y \sin (x y) d A$ where $R=[1,2] \times[0, \pi]$.

## Double integrals

Example. Find $\iint_{R} y \sin (x y) d A$ where $R=[1,2] \times[0, \pi]$.
Is it easier to integrate with respect to $\qquad$ .

## Double integrals

Example. Find $\iint_{R} y \sin (x y) d A$ where $R=[1,2] \times[0, \pi]$.
Is it easier to integrate with respect to $\qquad$ .

Properties of double integrals

## Double integrals

Example. Find $\iint_{R} y \sin (x y) d A$ where $R=[1,2] \times[0, \pi]$.
Is it easier to integrate with respect to $\qquad$ .

Properties of double integrals
When $f(x, y)$ is a product of (afcn of $x$ ) and (a fcn of $y$ ) over a rectangle $[a, b] \times[c, d]$, then the double integral decomposes nicely:

$$
\iint_{R} g(x) h(y) d A=\left[\int_{a}^{b} g(x) d x\right] \cdot\left[\int_{c}^{d} h(y) d y\right]
$$

## Double integrals

Example. Find $\iint_{R} y \sin (x y) d A$ where $R=[1,2] \times[0, \pi]$.
Is it easier to integrate with respect to $\qquad$ .

Properties of double integrals
When $f(x, y)$ is a product of (a fcn of $x$ ) and (a fcn of $y$ ) over a rectangle $[a, b] \times[c, d]$, then the double integral decomposes nicely:

$$
\iint_{R} g(x) h(y) d A=\left[\int_{a}^{b} g(x) d x\right] \cdot\left[\int_{c}^{d} h(y) d y\right]
$$

For general regions $R$ :
$-\iint_{R}(f+g) d A=\iint_{R} f d A+\iint_{R} g d A$

## Double integrals

Example. Find $\iint_{R} y \sin (x y) d A$ where $R=[1,2] \times[0, \pi]$.
Is it easier to integrate with respect to $\qquad$ .

Properties of double integrals
When $f(x, y)$ is a product of (a fcn of $x$ ) and (a fcn of $y$ ) over a rectangle $[a, b] \times[c, d]$, then the double integral decomposes nicely:

$$
\iint_{R} g(x) h(y) d A=\left[\int_{a}^{b} g(x) d x\right] \cdot\left[\int_{c}^{d} h(y) d y\right]
$$

For general regions $R$ :
$-\iint_{R}(f+g) d A=\iint_{R} f d A+\iint_{R} g d A$

- $\iint_{R} c f d A=c \iint_{R} f d A$


## Double integrals

Example. Find $\iint_{R} y \sin (x y) d A$ where $R=[1,2] \times[0, \pi]$.
Is it easier to integrate with respect to $\qquad$ .

Properties of double integrals
When $f(x, y)$ is a product of (a fcn of $x$ ) and (a fcn of $y$ ) over a rectangle $[a, b] \times[c, d]$, then the double integral decomposes nicely:

$$
\iint_{R} g(x) h(y) d A=\left[\int_{a}^{b} g(x) d x\right] \cdot\left[\int_{c}^{d} h(y) d y\right]
$$

For general regions $R$ :

- $\iint_{R}(f+g) d A=\iint_{R} f d A+\iint_{R} g d A$
- $\iint_{R} c f d A=c \iint_{R} f d A$
- If $f(x, y) \geq g(x, y)$ for all $(x, y) \in R$, then $\iint_{R} f d A \geq \iint g d A$.

