General regions ARE rectangles

Last time: $\iint_{R} f(x, y) d y d x$ when R is a rectangle. (Riemann)
Question: Does $\iint_{D} f(x, y) d y d x$ make sense when domain D is not a rectangle?

Answer: Yes, because we can view \iint_{D} as a \iint_{R} :
Suppose D is not a rectangle. Then fit D in a rectangle R, and extend the function $f(x, y)$ to be defined over all R :

$$
F(x, y)= \begin{cases}f(x, y) & (x, y) \in D \\ 0 & (x, y) \notin D\end{cases}
$$

Then define $\iint_{D} f(x, y) d A=\iint_{R} F(x, y) d A$.
(Which we know exists)

Calculating double integrals over non-rectangles

The way we decide to integrate \iint_{D} depends on the shape of D :
If D is defined by $\left\{\begin{aligned} \text { an "upper function" } y=g_{2}(x) \\ \text { a "lower function" } y=g_{1}(x)\end{aligned}\right\}$,
$\stackrel{\otimes}{\wedge}$ then integrate by slices with fixed x values.
$\iint_{D} f(x, y) d A=\int_{x=a}^{x=b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} f(x, y) d y d x$

If D is defined by $\left\{\begin{array}{r}\text { a "left function" } x=h_{2}(y) \\ \text { a "right function" } x=h_{1}(y)\end{array}\right\}$,
then integrate by slices with fixed y values.
$\iint_{D} f(x, y) d A=\int_{y=c}^{y=d} \int_{x=h_{1}(y)}^{x=h_{2}(y)} f(x, y) d y d x$
Determine type by looking at which slices cut all the way through D. Some regions work either way. Choose based on $f(x, y)$.

Simple Example

Example. Find $\iint_{D}(x+2 y) d A$, where D is bounded by $y=2 x^{2}$ and $y=1+x^{2}$.

Steps:

1. Plot the curves (Draw a picture!)
2. Find points of intersection
3. Determine order of integration
4. Determine "upper" and "lower" functions, other bounds
5. Do the integrals.

Not-as-simple Example

Example. Find $\iint_{D} x y d A$, where D bdd by $y=x-1$ and $y^{2}=2 x+6$. Important: Draw a picture.

If we were to set up the integral as slices in x, there would be two different lower functions, depending on whether $x \leq 1$ or $x \geq 1$. This would require doing two integrals!

Instead, integrate with slices in y. The "upper" function is and the "lower" function is \qquad
We calculate $\int_{y=-2}^{y=4} \int_{x=\frac{y^{2}-6}{2}}^{x=y+1} x y d x d y=\int_{y=-2}^{y=4}\left[y \frac{x^{2}}{2}\right]_{x=\frac{y^{2}-6}{2}}^{x=y+1} d y=$
$\frac{1}{2} \int_{y=-2}^{y=4} y(y+1)^{2}-y\left(\frac{y^{2}-6}{2}\right)^{2} d y=\frac{1}{2} \int_{y=-2}^{y=4}\left(-\frac{y^{5}}{4}+4 y^{3}+2 y^{2}-8 y\right) d y$
$=\frac{1}{2}\left[-\frac{y^{6}}{24}+y^{4}+\frac{2}{3} y^{3}-4 y^{2}\right]_{y=-2}^{y=4}=36$

A Wordy Example

Sometimes you need to find D and f from the problem statement.
Example. Set up the integral that finds the volume of the solid bounded by the planes $x+2 y+z=2, x=2 y, x=0$, and $z=0$.
Solution. Use the planes to understand and draw the solid.
Project the solid onto $x y$-plane to find domain D.
Where does $x+2 y+z=2$ intersect the axes?
(Draw in 3 -space and on $x y$-plane.)
What does $z=0$ do? What does $x=0$ do?
What does $x=2 y$ do?
So our domain D looks like:
(intersection pts? slicing direction? start/stop?)
Our function is $f(x, y)=z=2-x-2 y$, and our integral is $\int_{x=0}^{x=1} \int_{y=x / 2}^{y=1-x / 2}(2-x-2 y) d y d x$

Changing the order of integration

We might want to change the order of integration in iterated integrals.
Caution: For non-rectangles, we have to be very careful!
$\int_{0}^{1} \int_{y=x}^{y=1} f(x, y) d y d x \rightsquigarrow$

When chopping in x,
$\left\{\begin{array}{c}x \text { varies from } 0 \text { to } 1, \\ \text { upper fon is } y=1 \\ \text { lower fon is } y=x\end{array}\right\}$

When chopping in y,
$\longrightarrow\left\{\begin{array}{c}y \text { varies from } 0 \text { to } 1, \\ \text { upper fcn is } x=y \\ \text { lower fcn is } x=0\end{array}\right\}$

Double integral properties

Property. Suppose that $D=D_{1} \cup D_{2}$ (where D_{1} and D_{2} don't overlap).
Then

$$
\iint_{D} f d A=\iint_{D_{1}} f d A+\iint_{D_{2}} f d A .
$$

Consequence: Break down complicated regions into Type I and Type II regions.

Property. Suppose $m \leq f(x, y) \leq M$ for all $(x, y) \in D$. Then

$$
m \cdot \operatorname{Area}(D) \leq \iint_{D} f(x, y) d A \leq M \cdot \operatorname{Area}(D)
$$

Consequence: This gives a crude approximation for the integral.

Application: Density

Suppose you have a 2D sheet of metal (a lamina) where density varies over the sheet.
mass density function $\rho(x, y)$
The total mass of the object is
(mass per unit area)

$$
m=\iint_{D} \rho(x, y) d A
$$

charge density function $\sigma(x, y) \mid$ The total charge on the object is (charge per unit area)

$$
Q=\iint_{D} \sigma(x, y) d A
$$

Example. Find the mass of a \triangle lamina $w /$ corners $(1,0),(0,2),(1,2)$, and mass density function $\rho(x, y)=1+3 x+y$.
Solution. $m=\int_{x=0}^{x=1} \int_{y=2-2 x}^{y=2}(1+3 x+y) d y d x$
$=\left.\int_{x=0}^{x=1}\left(y+3 x y+\frac{y^{2}}{2}\right)\right|_{y=2-2 x} ^{y=2} d x$
$\left.=\int_{x=0}^{x=1}\left(6 x+4 x^{2}\right) d x=3 x^{2}+\frac{4}{3} x^{3}\right]_{x=0}^{x=1}=\frac{13}{3}$

