
Double integrals over general regions — §12.2 95

General regions ARE rectangles

Last time:
∫∫

R f (x , y) dy dx when R is a rectangle. (Riemann)

Question: Does
∫∫

D f (x , y) dy dx make sense when domain D is
not a rectangle?

Answer: Yes, because we can view
∫∫

D as a
∫∫

R :

Suppose D is not a rectangle. Then fit D in a rectangle R, and
extend the function f (x , y) to be defined over all R:

F (x , y) =

{
f (x , y) (x , y) ∈ D

0 (x , y) /∈ D

Then define

∫∫
D
f (x , y) dA =

∫∫
R
F (x , y) dA.

(Which we know exists)



Double integrals over general regions — §12.2 95

General regions ARE rectangles

Last time:
∫∫

R f (x , y) dy dx when R is a rectangle. (Riemann)

Question: Does
∫∫

D f (x , y) dy dx make sense when domain D is
not a rectangle?

Answer: Yes, because we can view
∫∫

D as a
∫∫

R :

Suppose D is not a rectangle. Then fit D in a rectangle R, and
extend the function f (x , y) to be defined over all R:

F (x , y) =

{
f (x , y) (x , y) ∈ D

0 (x , y) /∈ D

Then define

∫∫
D
f (x , y) dA =

∫∫
R
F (x , y) dA.

(Which we know exists)



Double integrals over general regions — §12.2 95

General regions ARE rectangles

Last time:
∫∫

R f (x , y) dy dx when R is a rectangle. (Riemann)

Question: Does
∫∫

D f (x , y) dy dx make sense when domain D is
not a rectangle?

Answer: Yes, because we can view
∫∫

D as a
∫∫

R :

Suppose D is not a rectangle. Then fit D in a rectangle R,

and
extend the function f (x , y) to be defined over all R:

F (x , y) =

{
f (x , y) (x , y) ∈ D

0 (x , y) /∈ D

Then define

∫∫
D
f (x , y) dA =

∫∫
R
F (x , y) dA.

(Which we know exists)



Double integrals over general regions — §12.2 95

General regions ARE rectangles

Last time:
∫∫

R f (x , y) dy dx when R is a rectangle. (Riemann)

Question: Does
∫∫

D f (x , y) dy dx make sense when domain D is
not a rectangle?

Answer: Yes, because we can view
∫∫

D as a
∫∫

R :

Suppose D is not a rectangle. Then fit D in a rectangle R, and
extend the function f (x , y) to be defined over all R:

F (x , y) =

{
f (x , y) (x , y) ∈ D

0 (x , y) /∈ D

Then define

∫∫
D
f (x , y) dA =

∫∫
R
F (x , y) dA.

(Which we know exists)



Double integrals over general regions — §12.2 95

General regions ARE rectangles

Last time:
∫∫

R f (x , y) dy dx when R is a rectangle. (Riemann)

Question: Does
∫∫

D f (x , y) dy dx make sense when domain D is
not a rectangle?

Answer: Yes, because we can view
∫∫

D as a
∫∫

R :

Suppose D is not a rectangle. Then fit D in a rectangle R, and
extend the function f (x , y) to be defined over all R:

F (x , y) =

{
f (x , y) (x , y) ∈ D

0 (x , y) /∈ D

Then define

∫∫
D
f (x , y) dA =

∫∫
R
F (x , y) dA.

(Which we know exists)



Double integrals over general regions — §12.2 95

General regions ARE rectangles

Last time:
∫∫

R f (x , y) dy dx when R is a rectangle. (Riemann)

Question: Does
∫∫

D f (x , y) dy dx make sense when domain D is
not a rectangle?

Answer: Yes, because we can view
∫∫

D as a
∫∫

R :

Suppose D is not a rectangle. Then fit D in a rectangle R, and
extend the function f (x , y) to be defined over all R:

F (x , y) =

{
f (x , y) (x , y) ∈ D

0 (x , y) /∈ D

Then define

∫∫
D
f (x , y) dA =

∫∫
R
F (x , y) dA.

(Which we know exists)



Double integrals over general regions — §12.2 96

Calculating double integrals over non-rectangles

The way we decide to integrate
∫∫

D depends on the shape of D:

If D is defined by

{
an “upper function” y = g2(x)

a “lower function” y = g1(x)

}
,

then integrate by slices with fixed x values.∫∫
D

f (x , y) dA =

∫ x=b

x=a

∫ y=g2(x)

y=g1(x)

f (x , y) dy dx

T
yp

e
I

If D is defined by

{
a “left function” x = h2(y)

a “right function” x = h1(y)

}
,

then integrate by slices with fixed y values.∫∫
D

f (x , y) dA =

∫ y=d

y=c

∫ x=h2(y)

x=h1(y)

f (x , y) dy dxT
yp

e
II

Determine type by looking at which slices cut all the way through D.
Some regions work either way. Choose based on f (x , y).
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Simple Example

Example. Find
∫∫

D(x + 2y) dA,
where D is bounded by y = 2x2 and y = 1 + x2.

Steps:
1. Plot the curves (Draw a picture!)
2. Find points of intersection

3. Determine order of integration

4. Determine “upper” and “lower” functions, other bounds

5. Do the integrals.
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Not-as-simple Example

Example. Find
∫∫

D xy dA, where D bdd by y = x − 1 and y2 = 2x + 6.

Important: Draw a picture.

If we were to set up the integral as slices in x , there would be two
different lower functions, depending on whether x ≤ 1 or x ≥ 1.
This would require doing two integrals! (What are they?)

Instead, integrate with slices in y . The “upper” function is
and the “lower” function is .

We calculate

∫ y=4

y=−2

∫ x=y+1

x= y2−6
2

xy dx dy =

∫ y=4

y=−2

[
y
x2

2

]x=y+1

x= y2−6
2

dy =

1

2

∫ y=4

y=−2
y(y +1)2−y

( y2−6
2

)2
dy =

1

2

∫ y=4

y=−2

(
− y5

4 +4y3+2y2−8y
)
dy

= 1
2

[
− y6

24 + y4 + 2
3y

3 − 4y2
]y=4

y=−2
= 36
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= 36
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A Wordy Example

Sometimes you need to find D and f from the problem statement.

Example. Set up the integral that finds the volume of the solid
bounded by the planes x + 2y + z = 2, x = 2y , x = 0, and z = 0.

Solution.Use the planes to understand and draw the solid.
Project the solid onto xy -plane to find domain D.
Where does x + 2y + z = 2 intersect the axes?
(Draw in 3-space and on xy-plane.)

What does z = 0 do? What does x = 0 do?

What does x = 2y do?

So our domain D looks like:
(intersection pts? slicing direction? start/stop?)

Our function is f (x , y) = z = 2− x − 2y , and our integral is∫ x=1

x=0

∫ y=1−x/2

y=x/2
(2− x − 2y) dy dx
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Changing the order of integration

We might want to change the order of integration in iterated integrals.

Caution: For non-rectangles, we have to be very careful!

∫ 1

0

∫ y=1

y=x
f (x , y) dy dx  

 
∫ 1

0

∫ x=y

x=0
f (x , y) dx dy

When chopping in x ,{ x varies from 0 to 1,
upper fcn is y = 1
lower fcn is y = x

}
−→

When chopping in y ,{ y varies from 0 to 1,
upper fcn is x = y
lower fcn is x = 0

}
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Double integral properties

Property. Suppose that D = D1 ∪D2 (where D1 and D2 don’t overlap).
Then ∫∫

D
f dA =

∫∫
D1

f dA +

∫∫
D2

f dA.

Consequence: Break down complicated regions into Type I and
Type II regions.

Property. Suppose m ≤ f (x , y) ≤ M for all (x , y) ∈ D. Then

m · Area(D) ≤
∫∫

D
f (x , y) dA ≤ M · Area(D)

Consequence: This gives a crude approximation for the integral.
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Application: Density

Suppose you have a 2D sheet of metal (a lamina) where density
varies over the sheet.

mass density function ρ(x , y)
(mass per
unit area)

The total mass of the object is

m =

∫∫
D
ρ(x , y) dA

charge density function σ(x , y)
(charge per
unit area)

The total charge on the object is

Q =

∫∫
D
σ(x , y) dA

Example. Find the mass of a 4 lamina w/ corners (1, 0), (0, 2), (1, 2),
and mass density function ρ(x , y) = 1 + 3x + y .

Solution.m =
∫ x=1
x=0

∫ y=2
y=2−2x(1 + 3x + y) dy dx

=
∫ x=1
x=0 (y + 3xy + y2

2 )
∣∣y=2

y=2−2x
dx

=
∫ x=1
x=0 (6x + 4x2) dx = 3x2 + 4

3x
3]x=1
x=0 = 13

3
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