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General regions ARE rectangles

Last time: [[ f(x,y)dy dx when R is a rectangle. (Riemann)

Question: Does [[,, f(x,y)dy dx make sense when domain D is
not a rectangle?

Answer: Yes, because we can view ffD as a ffR:

Suppose D is not a rectangle. Then fit D in a rectangle R, and
extend the function f(x, y) to be defined over all R:

T

Then define // x,y)dA = // x,y) dA.

(Which we know exists)
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Calculating double integrals over non-rectangles

The way we decide to integrate [[, depends on the shape of D
If D is defined by { an “upper function” y = g(x)

“lower function” y = g1(x) }
then integrate by slices with fixed x values

e [ 2

g1(x)

Type |

f(x,y)dy dx

If D is defined by { a “left function” x = hy(y)

y
a “right function” x = hy(y) }
then integrate by slices with fixed y values

y=d x=hy(y .
// (x,y)dA = / / f(x,y)dy dx

Type 1

Determine type by looking at which slices cut all the way through D
Some regions work either way. Choose based on f(x, y)
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Simple Example

Example. Find [[,(x + 2y) dA,

where D is bounded by y = 2x? and y = 1 4 x°.
Steps:

1. Plot the curves (Draw a picture!)

2. Find points of intersection

3. Determine order of integration
4. Determine “upper” and “lower” functions, other bounds

5. Do the integrals.
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Instead, integrate with slices in y. The “upper” function is
and the “lower” function is

y=4 rx=y+1 y=4 X2 x=y+1
We calculate / / ,  xydxdy = / [y} dy =
y=-2 _y~—6 y=-2 2 y2—6

x=5=
1

y=4 2 62
2/ y(y+12—y(552) dy =



Double integrals over general regions — §12.2 98

Not-as-simple Example

Example. Find [/, xy dA, where D bdd by y = x — 1 and y? = 2x + 6.
Important: Draw a picture.

If we were to set up the integral as slices in x, there would be two
different lower functions, depending on whether x <1 or x > 1.
This would require doing two integrals! (What are they?)

Instead, integrate with slices in y. The “upper” function is
and the “lower” function is

y=4 x=y+1 y=4 X2 x=y+1
We calculate / / ,  xydxdy = / [y} dy =
X y<—=6 y:72 2 2_6

y:—2 =L 2 x=X 3
A 1

y=4
2/ y(y+1)2—y(y226)2dy:2/_ 2(—y75+4y3+2y2—8y) dy



Double integrals over general regions — §12.2 98
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Example. Find [/, xy dA, where D bdd by y = x — 1 and y? = 2x + 6.
Important: Draw a picture.

If we were to set up the integral as slices in x, there would be two
different lower functions, depending on whether x <1 or x > 1.
This would require doing two integrals! (What are they?)

Instead, integrate with slices in y. The “upper” function is
and the “lower” function is

y=4 x=y+1 y=4 X2 x=y+1
We calculate / / ,  xydxdy = / [y} dy =
y=—2Jx=¥">8 y=-2 2 )<:y2T_6
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L 2 (y=6)2 S a3
5 yy+1)7 =y () dy = 5 2(—7+4y +2y?—8y) dy
o

6 —4
=s[—m+y -4, =36
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A Wordy Example

Sometimes you need to find D and f from the problem statement.

Example. Set up the integral that finds the volume of the solid
bounded by the planes x+2y +z =2, x =2y, x =0, and z = 0.

Solution.Use the planes to understand and draw the solid.
Project the solid onto xy-plane to find domain D.

Where does x + 2y 4+ z = 2 intersect the axes?

(Draw in 3-space and on xy-plane.)

What does z = 0 do? What does x = 0 do?
What does x = 2y do?

So our domain D looks like:
(intersection pts? slicing direction? start/stop?)

Our functlon is f(x,y) = z=2—x—2y, and our integral is

y=1— X/2
/ / 2 — x —2y)dydx
x= =x/2
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Double integral properties

Property. Suppose that D = D; U D, (where Dy and D, don't overlap).

Then
//fdA:// fdAJr// f dA.
D D1 D>

Consequence: Break down complicated regions into Type | and
Type Il regions.

Property. Suppose m < f(x,y) < M for all (x,y) € D. Then
m - Area(D) < // f(x,y)dA < M- Area(D)
D

Consequence: This gives a crude approximation for the integral.
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and mass density function p(x,y) =1+ 3x + y.
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Example. Find the mass of a A lamina w/ corners (1,0), (0,2), (1,2),
and mass density function p(x,y) =1+ 3x + y.
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