Some regions demand polar coordinates

Some regions are best described in polar coordinates:

Parts of circles

Parts of annuli

These are called polar rectangles because they have the form

$$
\left\{\begin{array}{c}
a \leq r \leq b \\
\alpha \leq \theta \leq \beta
\end{array}\right\} \text { for constants }\left\{\begin{array}{c}
a, b \\
\alpha, \beta
\end{array}\right\}
$$

Polar coordinates

Goal: Convert a double integral involving x 's and y 's into a double integral involving r 's and θ 's.

Important: Using "polar slices" introduces a complication.

In this picture, $d A$ is not $d r d \theta$.
 The radial component is \qquad and the circular component is \qquad .
This means $d A=$ \qquad .
Consequence: To calculate $\iint_{D} f(x, y) d A$, when D is best described in polar coordinates, calculate

$$
\iint_{D} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Polar coordinate example

Example. Find the area inside $r=4 \cos \theta$ from $\theta=\frac{\pi}{4}$ to $\frac{\pi}{2}$.

This region is defined as $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$ and \qquad $\leq r \leq$ \qquad .

We use $A=\iint d A$:
\star Along the way, we had $\int_{\alpha}^{\beta} \frac{r^{2}}{2} d \theta \ldots \ldots$.

Application: Density (p. 692/723)

Example. The density of a point on a semicircular lamina of radius a is proportional to the distance from the center of the circle. Find the mass of the lamina.

Solution. Draw a picture!

Setup: Let the lamina be the upper half of the circle $x^{2}+y^{2}=a^{2}$, which is a polar rectangle:

The density function can be written: $\rho(x, y)=K \sqrt{x^{2}+y^{2}}$
The total mass is $m=\iint_{D} \rho(x, y) d A$

$$
\cdots=\int_{\theta=0}^{\theta=\pi} K \frac{a^{3}}{3} d \theta=\left[K \frac{a^{3}}{3} \theta\right]_{\theta=0}^{\theta=\pi}=\frac{\pi K a^{3}}{3} .
$$

Changing from (x, y) to (r, θ)

Example. Calculate $\int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}}\left(x^{3}+x y^{2}\right) d y d x$

Solution. Draw a picture!

Notice that this is the polar rectangle
$0 \leq r \leq 3$ and $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
Rewrite the integral as
$\iint_{D}\left(r^{3} \cos ^{3} \theta+r^{3} \cos \theta \sin ^{2} \theta\right) r d r d \theta$
$=\iint_{D} r^{4} \cos \theta\left(\cos ^{2} \theta+\sin ^{2} \theta\right) d r d \theta=\iint_{D} r^{4} \cos \theta d r d \theta$
$=\left(\int_{r=0}^{r=3} r^{4} d r\right) \cdot\left(\int_{\theta=-\pi / 2}^{\theta=\pi / 2} \cos \theta d \theta\right)$
$=\left[\frac{r^{5}}{5}\right]_{r=0}^{r=3} \cdot[\sin \theta]_{\theta=-\pi / 2}^{\theta=\pi / 2}=\left(\frac{3^{5}}{5}-0\right) \cdot(1-(-1))=\frac{2 \cdot 3^{5}}{5}$

Volume example

Example. Find the volume of the solid under the paraboloid $z=x^{2}+y^{2}$, above the $x y$-plane, and inside the cylinder $(x-1)^{2}+y^{2}=1$.

Plan of attack: Draw a picture!

- Notice circley thingees. Think: Possible Polar Problem.
- Convert the given information to polar equations using

$$
\begin{aligned}
& \quad(x, y)=(r \cos \theta, r \sin \theta): \\
& (x-1)^{2}+y^{2}=1 \rightsquigarrow(r \cos \theta-1)^{2}+(r \sin \theta)^{2}=1 \rightsquigarrow r=2 \cos \theta . \\
& \left(x^{2}+y^{2}\right) \rightsquigarrow r^{2} .
\end{aligned}
$$

- Set up the polar integral.

So $\iint_{D}\left(x^{2}+y^{2}\right) d A=\iint_{D} r^{2} r d r d \theta$.

- Integrate

