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Some regions are best described in polar coordinates:
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These are called polar rectangles because they have the form

asr<b for constants a, b
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Goal: Convert a double integral involving x's and y's
into a double integral involving r's and @'s.

Important: Using “polar slices”
introduces a complication.

In this picture, dA is not dr df. & .

The radial component is and the circular component is

This means dA = : (How to remember?)

Consequence: To calculate [, f(x,y)dA,
when D is best described in polar coordinates, calculate

// f(rcos@,rsin)rdrdf
D
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Example. Find the area inside
r =4cosf from 6 = 7 to 7.

r = 4cos(6)
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Polar coordinate example

O=n/2 O=n/4

Example. Find the area inside

r =4cosf from 0 = % to g

This region is defined as 7 <0 < 7
and <r<

We use A = [[ dA:
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Polar coordinate example

Example. Find the area inside
r =4cosf from 6 = 7 to 7.

This region is defined as 7 < 6 <

and <r<

We use A = [[ dA:

B
% Along the way, we had / ;

NI

2

b=n/2

O=n/4
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radius a is proportional to the distance from the center of the
circle. Find the mass of the lamina.
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Application: Density (p. 692/723)

Example. The density of a point on a semicircular lamina of
radius a is proportional to the distance from the center of the
circle. Find the mass of the lamina.

Solution. Draw a picture!

Setup: Let the lamina be the upper half
of the circle x? + y? = a°,

which is a polar rectangle:

The density function can be written:
p(x,y) = Ky/x? + y?

The total mass is m = [[, p(x,y) dA

0=m 3 q0=m 3
-:/ K2 do = [K"e] mKa
6=0

w|Y,
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Changing from (x, y) to (r,6)

V9—x2
Example. CaIcuIate/ / (x +xy2)dydx

Solution. Draw a picture!

Notice that this is the polar rectangle
0<r<3and —%SQS%.

(

hint for
polar!

)
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Changing from (x, y) to (r,6)

3
Example. CaIcuIate/ / (x® 4 xy?) dy dx

Solution. Draw a picture!

Notice that this is the polar rectangle
0<r<3and —%SHS%.

Rewrite the integral as

(r}cos® 0 + r3cosfsin®6) rdr df

// r* cos 0( cos 0 + sin? 0) drdﬁ—// r*cos@ dr df
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Changing from (x, y) to (r,6)

3 ,V9-—x? :
hint f
Example. CaIcuIate/ / (x® 4 xy?) dy dx nt for
0 2 polar!

Solution. Draw a picture!

Notice that this is the polar rectangle
0<r<3and —%SHS%.

Rewrite the integral as

(r}cos® 0 + r3cosfsin®6) rdr df

// r* cos 0( cos 0 + sin? 0) drdﬁ—// r*cos@ dr df
O0=m/2
</ r4dr>~</ c059d9>
r=0 O0=—m/2

51r=3

r . O=m/2
E s,
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Changing from (x, y) to (r,6)
3 V/9—x2 -
Example. Calculate / / (x3 +xy2) dy dx <h|nt fc:r)
0 —V/O0—x2 poIar.
Solution. Draw a picture!

Notice that this is the polar rectangle
0<r<3and —%SHS%.

Rewrite the integral as

(r}cos® 0 + r3cosfsin®6) rdr df

// r* cos 0( cos 0 + sin? 0) drdﬁ—// r*cos@ dr df
O0=m/2
</ r4dr>~</ c059d9>
r=0 O0=—m/2

. [;5];3' [sinﬂzzi/:/z _ (‘15 _0> (1-(-1) = 2-535

r=0
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Example. Find the volume of the solid under the paraboloid z=x?+y?
above the xy-plane, and inside the cylinder (x — 1)? + y? = 1.
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Example. Find the volume of the solid under the paraboloid z=x?+y?
above the xy-plane, and inside the cylinder (x — 1)? + y? = 1.

Plan of attack: Draw a picture!
» Notice circley thingees. Think: Possible Polar Problem.
» Convert the given information to polar equations using
(x,y) = (rcosf, rsinf):
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» Set up the polar integral.

So [[p(x*+ y?)dA= [[, r?rdrdf.

P Integrate......ccovveiiiiii
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