Course Notes

Multivariable Calculus, Spring 2014

Queens College, Math 201

Prof. Christopher Hanusa
http://qcpages.qc.edu/~chanusa/courses/201sp14/

Class Introductions

Arrange yourselves into groups of four or five people, With people you don't know.

- Introduce yourself. (your name, where you're from, your major)
- What brought you to this class?
- Fill out the front of your notecard:
- Write your name. (Stylize if you wish.)
- Write a few words related to your name.
- Draw something in the remaining space.
- Discuss with your groupmates why you wrote what you wrote.
- Exchange contact information. (phone / email / other)

Class Introductions

Arrange yourselves into groups of four or five people, With people you don't know.

- Introduce yourself. (your name, where you're from, your major)
- What brought you to this class?
- Fill out the front of your notecard:
- Write your name. (Stylize if you wish.)
- Write a few words related to your name.
- Draw something in the remaining space.
- Discuss with your groupmates why you wrote what you wrote.
- Exchange contact information. (phone / email / other)
- Discuss! What is "Calculus"?

Brainstorm then organize into a mind map.
http://www.mind-mapping.co.uk/_images/_Images/
ADVICE-AND-INFORMATION/How-to-MindMap-imindmap.jpg

Class Introductions

Arrange yourselves into groups of four or five people, With people you don't know.

- Introduce yourself. (your name, where you're from, your major)
- What brought you to this class?
- Fill out the front of your notecard:
- Write your name. (Stylize if you wish.)
- Write a few words related to your name.
- Draw something in the remaining space.
- Discuss with your groupmates why you wrote what you wrote.
- Exchange contact information. (phone / email / other)
- Discuss! What is "Calculus"?

Brainstorm then organize into a mind map.

- How do these ideas translate to multivariable calculus?

To do well in this class:

- Form good study groups.
- Discuss homework and classwork. Study for exams.
- Bounce around ideas, topics, questions.
- You will depend on this group.

To do well in this class:

- Form good study groups.
- Discuss homework and classwork. Study for exams.
- Bounce around ideas, topics, questions.
- You will depend on this group.
- Put in the time.
- Four credits = (at least) twelve hours / week out of class.
- Homework stresses key concepts from class; learning takes time.

To do well in this class:

- Form good study groups.
- Discuss homework and classwork. Study for exams.
- Bounce around ideas, topics, questions.
- You will depend on this group.
- Put in the time.
- Four credits $=($ at least $)$ twelve hours $/$ week out of class.
- Homework stresses key concepts from class; learning takes time.
- Come to class prepared.
- Review previous day's sections.
- Do the homework \& prepare to present.
- Read the day's sections.

To do well in this class:

- Form good study groups.
- Discuss homework and classwork. Study for exams.
- Bounce around ideas, topics, questions.
- You will depend on this group.
- Put in the time.
- Four credits = (at least) twelve hours / week out of class.
- Homework stresses key concepts from class; learning takes time.
- Come to class prepared.
- Review previous day's sections.
- Do the homework \& prepare to present.
- Read the day's sections.
- Stay in contact.
- If you are confused, ask questions (in class and out).
- Don't fall behind in coursework or homework.
- I need to understand your concerns.

To do well in this class:

- Form good study groups.
- Discuss homework and classwork. Study for exams.
- Bounce around ideas, topics, questions.
- You will depend on this group.
- Put in the time.
- Four credits = (at least) twelve hours / week out of class.
- Homework stresses key concepts from class; learning takes time.
- Come to class prepared.
- Review previous day's sections.
- Do the homework \& prepare to present.
- Read the day's sections.
- Stay in contact.
- If you are confused, ask questions (in class and out).
- Don't fall behind in coursework or homework.
- I need to understand your concerns.

Homework policy:

There are two types of homework in this class:

- Daily: Written / Presentation Homework.
- A list of questions from the textbook to practice.
- If a question is hard, you should practice more like it.

Homework policy:

There are two types of homework in this class:

- Daily: Written / Presentation Homework.
- A list of questions from the textbook to practice.
- If a question is hard, you should practice more like it.
- Presentations at beginning of the next class.
- Write up solution in bullet-point format.
- Present the solution to the class \& answer questions.

Homework policy:

There are two types of homework in this class:

- Daily: Written / Presentation Homework.
- A list of questions from the textbook to practice.
- If a question is hard, you should practice more like it.
- Presentations at beginning of the next class.
- Write up solution in bullet-point format.
- Present the solution to the class \& answer questions.
- One of only two bonus point opportunities in this class.
- Starts Wednesday January 29! (+ Blackboard quiz)

Homework policy:

There are two types of homework in this class:

- Daily: Written / Presentation Homework.
- A list of questions from the textbook to practice.
- If a question is hard, you should practice more like it.
- Presentations at beginning of the next class.
- Write up solution in bullet-point format.
- Present the solution to the class \& answer questions.
- One of only two bonus point opportunities in this class.
- Starts Wednesday January 29! (+ Blackboard quiz)
- Weekly: Online Homework.
- Using online homework called Webwork.
- Link on webpage to: http://192.195.176.176/webwork2/QC201/
- Your username: QC email username.
- Initial password: CUNYFirst ID \#

Homework policy:

There are two types of homework in this class:

- Daily: Written / Presentation Homework.
- A list of questions from the textbook to practice.
- If a question is hard, you should practice more like it.
- Presentations at beginning of the next class.
- Write up solution in bullet-point format.
- Present the solution to the class \& answer questions.
- One of only two bonus point opportunities in this class.
- Starts Wednesday January 29! (+ Blackboard quiz)
- Weekly: Online Homework.
- Using online homework called Webwork.
- Link on webpage to: http://192.195.176.176/webwork2/QC201/
- Your username: QC email username.
- Initial password: CUNYFirst ID \#
- First assignment due Monday February 3. (13 Qs)
- * Get started early! *

Homework policy:

There are two types of homework in this class:

- Daily: Written / Presentation Homework.
- A list of questions from the textbook to practice.
- If a question is hard, you should practice more like it.
- Presentations at beginning of the next class.
- Write up solution in bullet-point format.
- Present the solution to the class \& answer questions.
- One of only two bonus point opportunities in this class.
- Starts Wednesday January 29! (+ Blackboard quiz)
- Weekly: Online Homework.
- Using online homework called Webwork.
- Link on webpage to: http://192.195.176.176/webwork2/QC201/
- Your username: QC email username.
- Initial password: CUNYFirst ID \#
- First assignment due Monday February 3. (13 Qs)
- * Get started early! *
http://qcpages.qc.edu/~chanusa/courses/201sp14/forum.html

Parametric Curves

Imagine a particle traveling along this curve.

Is the curve a function?
Parametric Curves

Parametric Curves

Imagine a particle traveling along this curve.
Is the curve a function? $(y=f(x)$?)
However, we could write the x-coordinate and the y-coordinate
 of the particle as a function of time.

$$
\text { (Write } x=f(t) \text { and } y=g(t) .)
$$

Parametric Curves

Imagine a particle traveling along this curve.
Is the curve a function? $(y=f(x)$?)
However, we could write the x-coordinate and the y-coordinate
 of the particle as a function of time.

$$
\text { (Write } x=f(t) \text { and } y=g(t) .)
$$

This pair of functions is called the parametric equations of the curve.

Parametric Curves

Imagine a particle traveling along this curve.
Is the curve a function? $(y=f(x)$?)
However, we could write the x-coordinate and the y-coordinate
 of the particle as a function of time.

$$
\text { (Write } x=f(t) \text { and } y=g(t) .)
$$

This pair of functions is called the parametric equations of the curve.
And the variable t is called a parameter.

Parametric Curves

Imagine a particle traveling along this curve.
Is the curve a function? $(y=f(x)$?)
However, we could write the x-coordinate and the y-coordinate
 of the particle as a function of time.

$$
\text { (Write } x=f(t) \text { and } y=g(t) .)
$$

This pair of functions is called the parametric equations of the curve.
And the variable t is called a parameter.
Note: The domain of t is often $(-\infty, \infty)$ or an interval $a \leq t \leq b$.

Parametric Curves

Imagine a particle traveling along this curve.
Is the curve a function? $(y=f(x)$?)
However, we could write the x-coordinate and the y-coordinate
 of the particle as a function of time.

$$
\text { (Write } x=f(t) \text { and } y=g(t) .)
$$

This pair of functions is called the parametric equations of the curve.
And the variable t is called a parameter.
Note: The domain of t is often $(-\infty, \infty)$ or an interval $a \leq t \leq b$.
Goal 1: Understand parametric curves. (Today)
Goal 2: Do calculus using parametric curves. (Next time)

Sketching Parametric Curves

What is the shape of a curve given by parametric equations?

Sketching Parametric Curves

What is the shape of a curve given by parametric equations?

- By hand
- Use a calculator or computer

Sketching Parametric Curves

What is the shape of a curve given by parametric equations?

- By hand
- Use a calculator or computer

Example. Plot the curve defined by $x(t)=t^{2}-2 t$ and $y(t)=t+1$.

Sketching Parametric Curves

What is the shape of a curve given by parametric equations?

- By hand
\longleftarrow How do you plot $y=f(x)$?
- Use a calculator or computer

Example. Plot the curve defined by $x(t)=t^{2}-2 t$ and $y(t)=t+1$.

Sketching Parametric Curves

What is the shape of a curve given by parametric equations?

- By hand
\longleftarrow How do you plot $y=f(x)$?
- Use a calculator or computer

Example. Plot the curve defined by $x(t)=t^{2}-2 t$ and $y(t)=t+1$.

| t | -1 | 0 | 1 | 2 | 3 | 4 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x(t)$ | | | | | | |
| $y(t)$ | | | | | | |

The shape of the curve is \qquad .

Sketching Parametric Curves

What is the shape of a curve given by parametric equations?

- By hand
\longleftarrow How do you plot $y=f(x)$?
- Use a calculator or computer

Example. Plot the curve defined by $x(t)=t^{2}-2 t$ and $y(t)=t+1$.

| t | -1 | 0 | 1 | 2 | 3 | 4 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x(t)$ | | | | | | |
| $y(t)$ | | | | | | |

The shape of the curve is

\qquad .

Should we have known this?

Sketching Parametric Curves

What is the shape of a curve given by parametric equations?

- By hand
\longleftarrow How do you plot $y=f(x)$?
- Use a calculator or computer

Example. Plot the curve defined by $x(t)=t^{2}-2 t$ and $y(t)=t+1$.

| t | -1 | 0 | 1 | 2 | 3 | 4 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x(t)$ | | | | | | |
| $y(t)$ | | | | | | |

The shape of the curve is \qquad .
Should we have known this?
Key concept: Eliminate the parameter t to combine $x=f(t)$ and $y=g(t)$ into a "normal" function $y=F(x)$ or $x=F(y)$.

Sketching Parametric Curves

What is the shape of a curve given by parametric equations?

- By hand
\longleftarrow How do you plot $y=f(x)$?
- Use a calculator or computer

Example. Plot the curve defined by $x(t)=t^{2}-2 t$ and $y(t)=t+1$.

t	-1	0	1	2	3	4
$x(t)$						
$y(t)$						

The shape of the curve is \qquad .
Should we have known this?
Key concept: Eliminate the parameter t to combine $x=f(t)$ and $y=g(t)$ into a "normal" function $y=F(x)$ or $x=F(y)$.
Solve for t in second equation: $t=y-1$ and plug in: $x=(y-1)^{2}-2(y-1)=y^{2}-4 y+3$, a "sideways parabola".

Around and Around

Example. Plot the curve defined by
$x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.

Around and Around

Example. Plot the curve defined by
$x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.
Plot points or solve directly.
$y=\sin \left(\cos ^{-1} x\right)$

Around and Around

Example. Plot the curve defined by
$x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.
Plot points or solve directly.

$$
\begin{aligned}
& y=\sin \left(\cos ^{-1} x\right) \\
& y=\sqrt{1-x^{2}}
\end{aligned}
$$

Around and Around

Example. Plot the curve defined by
$x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.
Plot points or solve directly.

$$
\begin{aligned}
& y=\sin \left(\cos ^{-1} x\right) \\
& y=\sqrt{1-x^{2}} \\
& y^{2}=1-x^{2} \\
& x^{2}+y^{2}=1
\end{aligned}
$$

Around and Around

Example. Plot the curve defined by
$x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.
Plot points or solve directly.

A circle! But you knew that. $\cos ^{2} t+\sin ^{2} t=1$

Around and Around

Example. Plot the curve defined by
$x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.
Plot points or solve directly.

A circle! But you knew that. $\cos ^{2} t+\sin ^{2} t=1$

Starts at $t=0:(1,0)$ and goes around counterclockwise.

Around and Around

Example. Plot the curve defined by $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.

Plot points or solve directly.

A circle! But you knew that. $\cos ^{2} t+\sin ^{2} t=1$

Starts at $t=0$: $(1,0)$ and goes around counterclockwise.

Example. Is this the same as $x=\sin 2 t, y=\sin 2 t, 0 \leq t \leq 2 \pi ?$

Around and Around

Example. Plot the curve defined by $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.

Plot points or solve directly.

$y=\sin \left(\cos ^{-1} x\right)$				
$y=\sqrt{1-x^{2}}$				
$y^{2}=1-x^{2}$				
$x^{2}+y^{2}=1$				

A circle! But you knew that. $\cos ^{2} t+\sin ^{2} t=1$

Starts at $t=0$: $(1,0)$ and goes around counterclockwise.

Example. Is this the same as $x=\sin 2 t, y=\sin 2 t, 0 \leq t \leq 2 \pi ?$

Question: What is $x^{2}+y^{2}$?

Around and Around

Example. Plot the curve defined by $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.

Plot points or solve directly.

$y=\sin \left(\cos ^{-1} x\right)$				
$y=\sqrt{1-x^{2}}$				
$y^{2}=1-x^{2}$				
$x^{2}+y^{2}=1$				

A circle! But you knew that. $\cos ^{2} t+\sin ^{2} t=1$

Starts at $t=0$: $(1,0)$ and goes around counterclockwise.

Example. Is this the same as $x=\sin 2 t, y=\sin 2 t, 0 \leq t \leq 2 \pi ?$

Question: What is $x^{2}+y^{2}$?

The figures traced out (the curves) are the same but the functions are not the same.

Around and Around

Example. Plot the curve defined by $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.

Plot points or solve directly.
$y=\sin \left(\cos ^{-1} x\right)$
$y=\sqrt{1-x^{2}}$
$y^{2}=1-x^{2}$
$x^{2}+y^{2}=1$

A circle! But you knew that. $\cos ^{2} t+\sin ^{2} t=1$

Starts at $t=0$: $(1,0)$ and goes around counterclockwise.

Example. Is this the same as $x=\sin 2 t, y=\sin 2 t, 0 \leq t \leq 2 \pi ?$

Question: What is $x^{2}+y^{2}$?

The figures traced out (the curves) are the same but the functions are not the same.

You need to know your trig functions and values at certain points!!!!

Circumnavigation

If we want to draw a circle at some other place

$$
\begin{gathered}
\quad(x-h)^{2}+(y-k)^{2}=r^{2}, \\
\text { set } \quad x-h=r \cos t \quad \text { and } \quad y-k=r \sin t .
\end{gathered}
$$

Circumnavigation

If we want to draw a circle at some other place

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

set $\quad x-h=r \cos t \quad$ and $\quad y-k=r \sin t$.
In other words, use the parametric equations

$$
x(t)=r \cos t+h \quad \text { and } \quad y(t)=r \sin t+k
$$

Circumnavigation

If we want to draw a circle at some other place

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

set $\quad x-h=r \cos t \quad$ and $\quad y-k=r \sin t$.
In other words, use the parametric equations

$$
x(t)=r \cos t+h \quad \text { and } \quad y(t)=r \sin t+k
$$

Try it out! Get out your graphing calculator $\mathrm{TI}-(\leq 86)$.
Switch to Parametric mode: MODE $\downarrow \downarrow \downarrow$ PAR (Enter).
Enter the equations $X_{1}=3 \cos (T)+2$ and $Y_{1}=3 \sin (T)+4$.
Set the domain of T to be from 0 to 2π.
This plots a circle of radius 3 centered at $(2,4)$.

Computers to the rescue

Calculators and computers can graph much more complicated curves.

$$
\begin{gathered}
x_{1}(t)=t+2 \sin (2 t) \quad \text { and } \quad y_{1}(t)=t+2 \cos (5 t) \\
x_{2}(t)=1.5 \cos t-\cos 30 t \quad \text { and } \quad y_{2}(t)=1.5 \sin t-\sin 30 t \\
x_{3}(t)=\sin (t+\cos 100 t) \quad \text { and } \quad y_{3}(t)=\cos (t+\sin 100 t)
\end{gathered}
$$

Computers to the rescue

Calculators and computers can graph much more complicated curves.

$$
\begin{gathered}
x_{1}(t)=t+2 \sin (2 t) \quad \text { and } \quad y_{1}(t)=t+2 \cos (5 t) \\
x_{2}(t)=1.5 \cos t-\cos 30 t \quad \text { and } \quad y_{2}(t)=1.5 \sin t-\sin 30 t \\
x_{3}(t)=\sin (t+\cos 100 t) \quad \text { and } \quad y_{3}(t)=\cos (t+\sin 100 t)
\end{gathered}
$$

Tools:

- Wolfram Alpha http://www.wolframalpha.com/
- More powerful is Wolfram Mathematica. Get license from MyQC: myqc.qc.cuny.edu/Academics/mathematics/Pages3/access.aspx
- Online plotter: desmos.com Put $(f(t), g(t))$ in parentheses.

Computers to the rescue

Calculators and computers can graph much more complicated curves.

$$
\begin{gathered}
x_{1}(t)=t+2 \sin (2 t) \quad \text { and } \quad y_{1}(t)=t+2 \cos (5 t) \\
x_{2}(t)=1.5 \cos t-\cos 30 t \quad \text { and } \quad y_{2}(t)=1.5 \sin t-\sin 30 t \\
x_{3}(t)=\sin (t+\cos 100 t) \quad \text { and } \quad y_{3}(t)=\cos (t+\sin 100 t)
\end{gathered}
$$

Tools:

- Wolfram Alpha http://www.wolframalpha.com/
- More powerful is Wolfram Mathematica. Get license from MyQC: myqc.qc.cuny.edu/Academics/mathematics/Pages3/access.aspx
- Online plotter: desmos.com Put $(f(t), g(t))$ in parentheses.

Next time: What is the shape of a parametric curve? What is the length of a parametric curve? What about polar coordinates?
Before then: Work on homework to present in class Wednesday. Email me contact info, do syllabus quiz. Play with parametric eqns.

