Area under a parametric curve

Given $y=f(x)$, the area under the curve from $x=a$ to $x=b$ is Area $=\int_{x=a}^{x=b} y d x$

Area under a parametric curve

Given $y=f(x)$, the area under the curve from $x=a$ to $x=b$ is Area $=\int_{x=a}^{x=b} y d x \quad=\int_{t=\alpha}^{t=\beta} g(t) f^{\prime}(t) d t$

Area under a parametric curve

Given $y=f(x)$, the area under the curve from $x=a$ to $x=b$ is Area $=\int_{x=a}^{x=b} \begin{gathered}\leftarrow \text { right endpoint } \\ y d x \\ \leftarrow \text { left endpoint }\end{gathered}=\int_{t=\alpha}^{t=\beta} \underset{\substack{\leftarrow \text { right endpoint } \\ \leftarrow(t) f^{\prime}(t) d t \\ \leftarrow \text { left endpoint }}}{\leftarrow}$

Area under a parametric curve

Given $y=f(x)$, the area under the curve from $x=a$ to $x=b$ is
Area $=\int_{x=a}^{x=b} \begin{gathered}\leftarrow \text { right endpoint } \\ y d x \\ \leftarrow \text { left endpoint }\end{gathered}=\int_{t=\alpha}^{t=\beta \underset{~ r i g h t ~ e n d p o i n t ~}{\leftarrow}} \underset{\substack{\leftarrow \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \text { left endpoint }}}{\prime}$
Example. Find the area under one arch of the cycloid $\left\{\begin{array}{l}x=r(\theta-\sin \theta) \\ y=r(1-\cos \theta)\end{array}\right.$

Area under a parametric curve

Given $y=f(x)$, the area under the curve from $x=a$ to $x=b$ is
Area $=\int_{x=a}^{x=b} \begin{gathered}\leftarrow \text { right endpoint } \\ y d x \\ \leftarrow \text { left endpoint }\end{gathered}=\int_{t=\alpha}^{t=\beta} \underset{\substack{\leftarrow \text { right endpoint } \\ G(t) f^{\prime}(t) d t \\ \leftarrow \text { left endpoint }}}{\leftarrow}$
Example. Find the area under one arch of the cycloid $\left\{\begin{array}{l}x=r(\theta-\sin \theta) \\ y=r(1-\cos \theta)\end{array}\right.$ (Here, r is a constant and θ is the parameter.)

Area under a parametric curve

Given $y=f(x)$, the area under the curve from $x=a$ to $x=b$ is
Area $=\int_{x=a}^{x=b} \begin{gathered}\leftarrow \text { right endpoint } \\ y d x \\ \leftarrow \text { left endpoint }\end{gathered}=\int_{t=\alpha}^{t=\beta \underset{~ r i g h t ~ e n d p o i n t ~}{\leftarrow}} \underset{\substack{\leftarrow \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \text { left endpoint }}}{\prime}$
Example. Find the area under one arch of the cycloid $\left\{\begin{array}{l}x=r(\theta-\sin \theta) \\ y=r(1-\cos \theta)\end{array}\right.$ (Here, r is a constant and θ is the parameter.)

Plot it to see the shape.

Area under a parametric curve

Given $y=f(x)$, the area under the curve from $x=a$ to $x=b$ is
Area $=\int_{x=a}^{x=b} \begin{gathered}\leftarrow \text { right endpoint } \\ y d x \\ \leftarrow \text { left endpoint }\end{gathered}=\int_{t=\alpha}^{t=\beta \underset{~ r i g h t ~ e n d p o i n t ~}{\leftarrow}} \underset{\substack{\leftarrow \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \text { left endpoint }}}{\prime}$
Example. Find the area under one arch of the cycloid $\left\{\begin{array}{l}x=r(\theta-\sin \theta) \\ y=r(1-\cos \theta)\end{array}\right.$ (Here, r is a constant and θ is the parameter.)

Plot it to see the shape. One arch has range \qquad
\qquad .

Area under a parametric curve

Given $y=f(x)$, the area under the curve from $x=a$ to $x=b$ is
Area $=\int_{x=a}^{x=b} \begin{gathered}\leftarrow \text { right endpoint } \\ y d x \\ \leftarrow \text { left endpoint }\end{gathered}=\int_{t=\alpha}^{t=\beta \underset{~ r i g h t ~ e n d p o i n t ~}{\leftarrow}} \underset{\substack{\leftarrow \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \text { left endpoint }}}{\prime}$
Example. Find the area under one arch of the cycloid $\left\{\begin{array}{l}x=r(\theta-\sin \theta) \\ y=r(1-\cos \theta)\end{array}\right.$ (Here, r is a constant and θ is the parameter.)
Plot it to see the shape. One arch has range

$$
\begin{aligned}
& \leq \\
& s \theta) d \theta
\end{aligned}
$$

$$
\leq \theta \leq
$$

\qquad .
$A=\int y d x=\int r(1-\cos \theta) r(1-\cos \theta) d \theta$

Area under a parametric curve

Given $y=f(x)$, the area under the curve from $x=a$ to $x=b$ is
Area $=\int_{x=a}^{x=b} \begin{gathered}\leftarrow \text { right endpoint } \\ y d x \\ \leftarrow \text { left endpoint }\end{gathered}=\int_{t=\alpha}^{t=\beta} \underset{\substack{\leftarrow \text { right endpoint } \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \text { left endpoint }}}{\prime}$
Example. Find the area under one arch of the cycloid $\left\{\begin{array}{l}x=r(\theta-\sin \theta) \\ y=r(1-\cos \theta)\end{array}\right.$ (Here, r is a constant and θ is the parameter.)
Plot it to see the shape. One arch has range \qquad $\leq \theta \leq$ \qquad .
$A=\int y d x=\int r(1-\cos \theta) r(1-\cos \theta) d \theta$
$=r^{2} \int\left(1-2 \cos \theta+\cos ^{2} \theta\right) d \theta$

Area under a parametric curve

Given $y=f(x)$, the area under the curve from $x=a$ to $x=b$ is
Area $=\int_{x=a}^{x=b} \begin{gathered}\leftarrow \text { right endpoint } \\ y d x \\ \leftarrow \text { left endpoint }\end{gathered}=\int_{t=\alpha}^{t=\beta} \underset{\substack{\leftarrow \text { right endpoint } \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \text { left endpoint }}}{\prime}$
Example. Find the area under one arch of the cycloid $\left\{\begin{array}{l}x=r(\theta-\sin \theta) \\ y=r(1-\cos \theta)\end{array}\right.$ (Here, r is a constant and θ is the parameter.)
Plot it to see the shape. One arch has range \qquad $\leq \theta \leq$ \qquad .
$A=\int y d x=\int r(1-\cos \theta) r(1-\cos \theta) d \theta$
$=r^{2} \int\left(1-2 \cos \theta+\cos ^{2} \theta\right) d \theta$

Area inside a polar curve

For cartesian functions $y=f(x)$, calculate area as $A=\int d A=\int y d x$.

Area inside a polar curve

For cartesian functions $y=f(x)$, calculate area as $A=\int d A=\int y d x$.
What about the area "inside a curve" best described as a polar function $r=f(\theta)$?

Area inside a polar curve

For cartesian functions $y=f(x)$, calculate area as $A=\int d A=\int y d x$.
What about the area "inside a curve" best described as a polar function $r=f(\theta)$?

- We still use $A=\int d A$.
- But the formula for $d A$ is different.

Area inside a polar curve

For cartesian functions $y=f(x)$, calculate area as $A=\int d A=\int y d x$.

What about the area "inside a curve" best described as a polar function $r=f(\theta)$?

- We still use $A=\int d A$.
- But the formula for $d A$ is different.

Polar land

How much area is swept out by a little slice?

Area inside a polar curve

For cartesian functions $y=f(x)$, calculate area as $A=\int d A=\int y d x$.

What about the area "inside a curve" best described as a polar function $r=f(\theta)$?

- We still use $A=\int d A$.
- But the formula for $d A$ is different.

$$
A=\int_{\theta=a}^{\theta=b} \frac{1}{2}[f(\theta)]^{2} d \theta=\int_{a}^{b} \frac{1}{2} r^{2} d \theta
$$

Polar land

How much area is swept out by a little slice?

Area inside a polar curve

For cartesian functions $y=f(x)$, calculate area as $A=\int d A=\int y d x$.

What about the area "inside a curve" best described as a polar function $r=f(\theta)$?

- We still use $A=\int d A$.
- But the formula for $d A$ is different.

$$
A=\int_{\theta=a}^{\theta=b} \frac{1}{2}[f(\theta)]^{2} d \theta=\int_{a}^{b} \frac{1}{2} r^{2} d \theta
$$

Polar land

How much area is swept out by a little slice?

Example. What is the area inside one loop of the four-leaved rose $r=\cos 2 \theta$?

Area inside a polar curve

For cartesian functions $y=f(x)$, calculate area as $A=\int d A=\int y d x$.

What about the area "inside a curve" best described as a polar function $r=f(\theta)$?

- We still use $A=\int d A$.
- But the formula for $d A$ is different.

$$
A=\int_{\theta=a}^{\theta=b} \frac{1}{2}[f(\theta)]^{2} d \theta=\int_{a}^{b} \frac{1}{2} r^{2} d \theta
$$

Polar land

How much area is swept out by a little slice?

Example. What is the area inside one loop of the four-leaved rose $r=\cos 2 \theta$?

- What are the bounds on θ ?

Area inside a polar curve

For cartesian functions $y=f(x)$, calculate area as $A=\int d A=\int y d x$.

What about the area "inside a curve" best described as a polar function $r=f(\theta)$?

- We still use $A=\int d A$.
- But the formula for $d A$ is different.

$$
A=\int_{\theta=a}^{\theta=b} \frac{1}{2}[f(\theta)]^{2} d \theta=\int_{a}^{b} \frac{1}{2} r^{2} d \theta
$$

Polar land

How much area is swept out by a little slice?

Example. What is the area inside one loop of the four-leaved rose $r=\cos 2 \theta$?

- What are the bounds on θ ?
- For which θ does the curve pass through the origin?

Area inside a polar curve

For cartesian functions $y=f(x)$, calculate area as $A=\int d A=\int y d x$.

What about the area "inside a curve" best described as a polar function $r=f(\theta)$?

- We still use $A=\int d A$.
- But the formula for $d A$ is different.

$$
A=\int_{\theta=a}^{\theta=b} \frac{1}{2}[f(\theta)]^{2} d \theta=\int_{a}^{b} \frac{1}{2} r^{2} d \theta
$$

Polar land

How much area is swept out by a little slice?

Example. What is the area inside one loop of the four-leaved rose $r=\cos 2 \theta$?

- What are the bounds on θ ?
- For which θ does the curve pass through the origin?

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.

First: Draw a picture!

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.

First: Draw a picture!

- What are these curves?

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.

First: Draw a picture!

- What are these curves?
- Where do they intersect?

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.

First: Draw a picture!

- What are these curves?
- Where do they intersect?

Now calculate: $\left.\int_{\theta=_}^{\theta=}\left[\begin{array}{c}\text { outside } \\ {\left[\left(\frac{1}{2}(3 \sin \theta)^{2}\right)\right.}\end{array}\right)-\left(\frac{1}{2}(\sin \theta+1)^{2}\right)\right] d \theta$

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.

First: Draw a picture!

- What are these curves?
- Where do they intersect?

Now calculate: $\left.\int_{\theta=_}^{\theta=}\left[\begin{array}{c}\text { outside } \\ {\left[\left(\frac{1}{2}(3 \sin \theta)^{2}\right)\right.}\end{array}\right)-\left(\begin{array}{c}\text { inside } \\ 2\end{array}(\sin \theta+1)^{2}\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[9 \sin ^{2} \theta-\left(\sin ^{2} \theta+2 \sin \theta+1\right)\right] d \theta$

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.

First: Draw a picture!

- What are these curves?
- Where do they intersect?

Now calculate: $\left.\int_{\theta=-\quad \text { _ }}^{\theta=}\left[\begin{array}{c}\text { outside } \\ {\left[\left(\frac{1}{2}(3 \sin \theta)^{2}\right)\right.}\end{array}\right)-\left(\frac{1}{2}(\sin \theta+1)^{2}\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[9 \sin ^{2} \theta-\left(\sin ^{2} \theta+2 \sin \theta+1\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[8 \sin ^{2} \theta-2 \sin \theta-1\right] d \theta$

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.

First: Draw a picture!

- What are these curves?
- Where do they intersect?

Now calculate: $\left.\int_{\theta=-\quad \text { _ }}^{\theta=}\left[\begin{array}{c}\text { outside } \\ {\left[\left(\frac{1}{2}(3 \sin \theta)^{2}\right)\right.}\end{array}\right)-\left(\frac{1}{2}(\sin \theta+1)^{2}\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[9 \sin ^{2} \theta-\left(\sin ^{2} \theta+2 \sin \theta+1\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[8 \sin ^{2} \theta-2 \sin \theta-1\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}[4-4 \cos 2 \theta-2 \sin \theta-1] d \theta$

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.
First: Draw a picture!

- What are these curves?
- Where do they intersect?

Now calculate: $\left.\int_{\theta=_}^{\theta=}\left[\begin{array}{c}\text { outside } \\ {\left[\left(\frac{1}{2}(3 \sin \theta)^{2}\right)\right.}\end{array}\right)-\left(\begin{array}{c}\text { inside } \\ 2\end{array}(\sin \theta+1)^{2}\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[9 \sin ^{2} \theta-\left(\sin ^{2} \theta+2 \sin \theta+1\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[8 \sin ^{2} \theta-2 \sin \theta-1\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}[4-4 \cos 2 \theta-2 \sin \theta-1] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}[3-4 \cos 2 \theta-2 \sin \theta] d \theta$

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.
First: Draw a picture!

- What are these curves?
- Where do they intersect?

Now calculate: $\int_{\theta=-\quad}^{\theta=-}\left[\left(\begin{array}{c}\text { outside } \\ 2\end{array}(3 \sin \theta)^{2}\right)-\left(\begin{array}{c}\text { inside } \\ 2\end{array}(\sin \theta+1)^{2}\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[9 \sin ^{2} \theta-\left(\sin ^{2} \theta+2 \sin \theta+1\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[8 \sin ^{2} \theta-2 \sin \theta-1\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}[4-4 \cos 2 \theta-2 \sin \theta-1] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}[3-4 \cos 2 \theta-2 \sin \theta] d \theta$
$=\left[\frac{3 \theta}{2}-\sin 2 \theta+\cos \theta\right]_{\pi / 6}^{5 \pi / 6}$

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.
First: Draw a picture!

- What are these curves?
- Where do they intersect?

Now calculate: $\int_{\theta=}^{\theta=}\left[\left(\frac{1}{2}(3 \sin \theta)^{2}\right)-\left(\frac{1}{2}(\sin \theta+1)^{2}\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[9 \sin ^{2} \theta-\left(\sin ^{2} \theta+2 \sin \theta+1\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=-}\left[8 \sin ^{2} \theta-2 \sin \theta-1\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}[4-4 \cos 2 \theta-2 \sin \theta-1] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}[3-4 \cos 2 \theta-2 \sin \theta] d \theta$
$=\left[\frac{3 \theta}{2}-\sin 2 \theta+\cos \theta\right]_{\pi / 6}^{5 \pi / 6}$
$=\frac{3}{2}\left(\frac{5 \pi}{6}-\frac{\pi}{6}\right)-\left(\sin \frac{10 \pi}{6}-\sin \frac{2 \pi}{6}\right)+\left(\cos \frac{5 \pi}{6}-\cos \frac{\pi}{6}\right)=\cdots$

Inside yet Outside

Example. Calculate the area inside the curve $r=3 \sin \theta$ and outside the curve $r=\sin \theta+1$.
First: Draw a picture!

- What are these curves?
- Where do they intersect?

Now calculate: $\left.\int_{\theta=_}^{\theta=}\left[\begin{array}{c}\text { outside } \\ {\left[\left(\frac{1}{2}(3 \sin \theta)^{2}\right)\right.}\end{array}\right)-\left(\begin{array}{c}\text { inside } \\ 2\end{array}(\sin \theta+1)^{2}\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[9 \sin ^{2} \theta-\left(\sin ^{2} \theta+2 \sin \theta+1\right)\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}\left[8 \sin ^{2} \theta-2 \sin \theta-1\right] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}[4-4 \cos 2 \theta-2 \sin \theta-1] d \theta$
$=\frac{1}{2} \int_{\theta=-}^{\theta=}[3-4 \cos 2 \theta-2 \sin \theta] d \theta$
$=\left[\frac{3 \theta}{2}-\sin 2 \theta+\cos \theta\right]_{\pi / 6}^{5 \pi / 6}$
$=\frac{3}{2}\left(\frac{5 \pi}{6}-\frac{\pi}{6}\right)-\left(\sin \frac{10 \pi}{6}-\sin \frac{2 \pi}{6}\right)+\left(\cos \frac{5 \pi}{6}-\cos \frac{\pi}{6}\right)=\cdots$
$=\pi+\sqrt{3}-\sqrt{3}=\pi$

Arc length of a parametric curve

To find the arc length of a parametric curve, think $L=\int d L$.

Arc length of a parametric curve

To find the arc length of a parametric curve, think $L=\int d L$.
How much arc length ΔL does the curve traverse in one time unit Δt ?

Arc length of a parametric curve

To find the arc length of a parametric curve, think $L=\int d L$.
How much arc length ΔL does the curve traverse in one time unit Δt ?
$\Delta L_{i}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}=\sqrt{\left(f^{\prime}\left(t_{i}^{*}\right) \Delta t_{i}\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right) \Delta t_{i}\right)^{2}}$ (there is some t_{i}^{*} and some $t_{i}^{* *}$ in the time interval...)

Arc length of a parametric curve

To find the arc length of a parametric curve, think $L=\int d L$.
How much arc length ΔL does the curve traverse in one time unit Δt ?
$\Delta L_{i}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}=\sqrt{\left(f^{\prime}\left(t_{i}^{*}\right) \Delta t_{i}\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right) \Delta t_{i}\right)^{2}}$ (there is some t_{i}^{*} and some $t_{i}^{* *}$ in the time interval...)
$L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta L_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\left(f^{\prime}\left(t_{i}^{*}\right)\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right)\right)^{2}} \Delta t_{i}$
(Similar to a Riemann Sum)

Arc length of a parametric curve

To find the arc length of a parametric curve, think $L=\int d L$. How much arc length ΔL does the curve traverse in one time unit Δt ?
$\Delta L_{i}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}=\sqrt{\left(f^{\prime}\left(t_{i}^{*}\right) \Delta t_{i}\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right) \Delta t_{i}\right)^{2}}$ (there is some t_{i}^{*} and some $t_{i}^{* *}$ in the time interval...)
$L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta L_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\left(f^{\prime}\left(t_{i}^{*}\right)\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right)\right)^{2}} \Delta t_{i}$
(Similar to a Riemann Sum)
$L=\int_{t=\alpha}^{t=\beta} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t$

Arc length of a parametric curve

To find the arc length of a parametric curve, think $L=\int d L$. How much arc length ΔL does the curve traverse in one time unit Δt ?
$\Delta L_{i}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}=\sqrt{\left(f^{\prime}\left(t_{i}^{*}\right) \Delta t_{i}\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right) \Delta t_{i}\right)^{2}}$ (there is some t_{i}^{*} and some $t_{i}^{* *}$ in the time interval...)
$L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta L_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\left(f^{\prime}\left(t_{i}^{*}\right)\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right)\right)^{2}} \Delta t_{i}$
(Similar to a Riemann Sum)
$L=\int_{t=\alpha}^{t=\beta} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t$
Example. Find the arc length for the parametric curve $\left\{\begin{array}{l}x=\sin 2 t \\ y=\cos 2 t\end{array}\right.$ for $0 \leq t \leq 2 \pi$.

Arc length of a parametric curve

To find the arc length of a parametric curve, think $L=\int d L$. How much arc length ΔL does the curve traverse in one time unit Δt ?
$\Delta L_{i}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}=\sqrt{\left(f^{\prime}\left(t_{i}^{*}\right) \Delta t_{i}\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right) \Delta t_{i}\right)^{2}}$ (there is some t_{i}^{*} and some $t_{i}^{* *}$ in the time interval...)
$L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta L_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\left(f^{\prime}\left(t_{i}^{*}\right)\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right)\right)^{2}} \Delta t_{i}$
(Similar to a Riemann Sum)
$L=\int_{t=\alpha}^{t=\beta} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t$
Example. Find the arc length for the parametric curve $\left\{\begin{array}{l}x=\sin 2 t \\ y=\cos 2 t\end{array}\right.$ for $0 \leq t \leq 2 \pi$. What do we expect?

Arc length of a parametric curve

To find the arc length of a parametric curve, think $L=\int d L$. How much arc length ΔL does the curve traverse in one time unit Δt ?
$\Delta L_{i}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}=\sqrt{\left(f^{\prime}\left(t_{i}^{*}\right) \Delta t_{i}\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right) \Delta t_{i}\right)^{2}}$ (there is some t_{i}^{*} and some $t_{i}^{* *}$ in the time interval...)
$L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta L_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\left(f^{\prime}\left(t_{i}^{*}\right)\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right)\right)^{2}} \Delta t_{i}$
(Similar to a Riemann Sum)
$L=\int_{t=\alpha}^{t=\beta} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t$
Example. Find the arc length for the parametric curve $\left\{\begin{array}{l}x=\sin 2 t \\ y=\cos 2 t\end{array}\right.$ for $0 \leq t \leq 2 \pi$. What do we expect? What is this curve?

Arc length of a parametric curve

To find the arc length of a parametric curve, think $L=\int d L$. How much arc length ΔL does the curve traverse in one time unit Δt ?
$\Delta L_{i}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}=\sqrt{\left(f^{\prime}\left(t_{i}^{*}\right) \Delta t_{i}\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right) \Delta t_{i}\right)^{2}}$ (there is some t_{i}^{*} and some $t_{i}^{* *}$ in the time interval...)
$L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta L_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\left(f^{\prime}\left(t_{i}^{*}\right)\right)^{2}+\left(g^{\prime}\left(t_{i}^{* *}\right)\right)^{2}} \Delta t_{i}$
(Similar to a Riemann Sum)
$L=\int_{t=\alpha}^{t=\beta} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t$
Example. Find the arc length for the parametric curve $\left\{\begin{array}{l}x=\sin 2 t \\ y=\cos 2 t\end{array}\right.$ for $0 \leq t \leq 2 \pi$. What do we expect? What is this curve?
$\int_{t=0}^{t=2 \pi} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t=$

Arc length of a polar curve

To calculate arc length, view a polar curve as a parametric curve.

Arc length of a polar curve

To calculate arc length, view a polar curve as a parametric curve.

- Convert $r=f(\theta)$ to $\left\{\begin{array}{l}x=f(\theta) \cos \theta \\ y=f(\theta) \sin \theta\end{array}\right.$

Arc length of a polar curve

To calculate arc length, view a polar curve as a parametric curve.

- Convert $r=f(\theta)$ to $\left\{\begin{array}{l}x=f(\theta) \cos \theta \\ y=f(\theta) \sin \theta\end{array}\right.$
- Then $L=\int_{\theta=\alpha}^{\theta=\beta} \sqrt{\left[\frac{d}{d \theta}(f(\theta) \cos \theta)\right]^{2}+\left[\frac{d}{d \theta}(f(\theta) \sin \theta)\right]^{2}} d \theta$

Arc length of a polar curve

To calculate arc length, view a polar curve as a parametric curve.

- Convert $r=f(\theta)$ to $\left\{\begin{array}{l}x=f(\theta) \cos \theta \\ y=f(\theta) \sin \theta\end{array}\right.$
- Then $L=\int_{\theta=\alpha}^{\theta=\beta} \sqrt{\left[\frac{d}{d \theta}(f(\theta) \cos \theta)\right]^{2}+\left[\frac{d}{d \theta}(f(\theta) \sin \theta)\right]^{2}} d \theta$
... take derivatives \& do the algebra ...
$L=\int_{\theta=\alpha}^{\theta=\beta} \sqrt{[f(\theta)]^{2}+\left[\frac{d}{d \theta}(f(\theta))\right]^{2}} d \theta$

Arc length of a polar curve

To calculate arc length, view a polar curve as a parametric curve.

- Convert $r=f(\theta)$ to $\left\{\begin{array}{l}x=f(\theta) \cos \theta \\ y=f(\theta) \sin \theta\end{array}\right.$

Then $L=\int_{\theta=\alpha}^{\theta=\beta} \sqrt{\left[\frac{d}{d \theta}(f(\theta) \cos \theta)\right]^{2}+\left[\frac{d}{d \theta}(f(\theta) \sin \theta)\right]^{2}} d \theta$
... take derivatives \& do the algebra ...
$L=\int_{\theta=\alpha}^{\theta=\beta} \sqrt{[f(\theta)]^{2}+\left[\frac{d}{d \theta}(f(\theta))\right]^{2}} d \theta$

We can also understand this as $d L=\sqrt{(r d \theta)^{2}+(d r)^{2}}$

