Course Notes

Mathematical Models, Spring 2015

Queens College, Math 245

Prof. Christopher Hanusa

http://qcpages.qc.edu/~chanusa/courses/245/15/

What is a model?

A model is an object or concept used to represent something else. It converts reality to a form we can comprehend.

- Reality: How to understand the aerodynamics of an airplane? Model: Use a model airplane or a computer simulation.
- Reality: Politics flows between left-wing and right-wing ideas. Model: Think of public opinion as a pendulum.
A mathematical model is a model involving mathematical concepts.

IN THIS CLASS:

We take real-world situations and represent them using mathematics.

- Model the position of a falling object by function fitting.
- Model people waiting using a computer simulation.
- Model allocating resources using a system of inequalities.

Then we must analyze our models to determine their applicability.

Why should we model?

As scientists, we want to understand how the world works.

observed real-world behavior

- What is happening?
(Observation)
- What are the reasons for the behavior?
(Hypothesis)
- How do we convey that our reasoning is plausible? ("proof")
- Use the language of mathematics! -

Steps of the Modeling Process

Goal: Understand what is involved in "mathematical modeling".
First Step: Formulation.

- State the question. If the question is vague, make it precise. If the question is too big, subdivide it into manageable parts.
- Identify factors. Decide which quantities influence the behavior. Determine relationships between the quantities.
[Important: we are introducing \qquad .]
- Describe mathematically. Assign each quantity a variable. Represent each relationship with an equation.

Motivating Example: Gravity by Galileo

Example. In Galileo's time, a key question changed from:
Why do objects fall? -to- How do objects fall?
(Philosophical question)
(Describe a falling object's velocity)
First Step: Formulation.

- State the question. (Precise! What is an answer?) What formula describes an object's position as it falls?
- Identify factors. Galileo chose only distance, time, and velocity. Other variables?:
Simplifying Assumption: Velocity is proportional to the distance fallen.
- Describe mathematically. Assign variables. Call distance x, time t, and velocity v.
Then relationships give equations:
Velocity and distance are related: $v=\frac{d x}{d t}$.
And proportional means $v=a x$ for some constant a. (Goal?)

Steps of the Modeling Process

- After the formulation step, we have variables and equations.
- Do some analysis to develop mathematical conclusions.

Second Step: Mathematical Manipulation.

This may entail one or more of:

- Calculations
- Proving a theorem
- Solving an equation Other...

In our gravity example,
We have both $v=\frac{d x}{d t}$ and $v=a x$. Set them equal.
This gives the (differential) equation: $\frac{d x}{d t}=a x$.
Solving gives the equation $x(t)=k e^{a t}$ for constants a and k.
Something is not quite right...

Steps of the Modeling Process

We have a mathematical conclusion, but does it give a "right answer"?
The most important step of the modeling process is:
Third Step: Evaluation.
Translate the results back to the real-world situation and ask questions:

- Has the model explained the real-world observations?
- Are the answers we found accurate enough?
- Were our assumptions good assumptions?
- What are the strengths and weaknesses of our model?
- Did we make any mistakes in our mathematical manipulations?

If there are any problems,

- Go back to the First Step, Formulation.
- Change your assumptions!
- Start the modeling process over.

Motivating Example: Gravity by Galileo

Third Step: Evaluation.

Our mathematical calculations imply that the position of a falling object is $x(t)=k e^{a t}$.

In our real-world situation, we can set initial position to be 0 . Mathematically, $x(0)=0$.

This lets us solve for k in our equation:
$0=x(0)=k e^{a 0}=k e^{0}=k$.
So $k=0$. Plugging into our equation implies $x(t)=0$.
In words, this means that our object stays at rest for all t.

EPIC FAIL!

Perhaps the proportionality assumption is incorrect?

Motivating Example: Gravity by Galileo

First Step: Formulation.
Alternate assumption: The velocity is proportional to the time it has been falling. In particular, the velocity increases by $32 \mathrm{ft} / \mathrm{sec}$. Mathematically, we have the equations $v=32 t$ and $v=\frac{d x}{d t}$.
Second Step: Mathematical Manipulation.
Integrating gives $x(t)=16 t^{2}+C$.
Since $x(0)=0$ we can find $C=0$.
Therefore an object falling from rest has position $x(t)=16 t^{2}$.
Third Step: Evaluation.
This function agrees well with observations in many instances.
(Although not all!)

The Modeling Process

This chart summarizes the modeling process.

To do well in this class:

- Come to class prepared.
- Print out and read over course notes.
- Read assigned sections before class.
- Form good study groups.
- Discuss homework and classwork.
- Final project is a group project.
- You will depend on this group.
- Put in the time.
- Three credits $=$ (at least) nine hours / week out of class.
- Homework stresses key concepts from class; learning takes time.
- Stay in contact.
- If you are confused, ask questions (in class and out).
- Don't fall behind in coursework or project.
- I need to understand your concerns.

Homework posted online; Email me by Monday.

Choosing a problem statement.

Group Activity. Arrange yourselves into groups of four or five people, with people you don't know.

- Introduce yourself. (your name, where you're from, your major)
- Fill out the front of your notecard:
- Write your name. (Stylize if you wish.)
- Write a few words related to your name.
- Draw something in the remaining space.
- Discuss with your groupmates why you wrote what you wrote.
- Exchange contact information. (phone / email / other)
- Work in your group on the worksheet.

