## Vectors

We will be using vectors and matrices to store and manipulate data.

Definition: A vector  $\vec{v}$  is a column of numbers. Use bold faced letters or vector signs to distinguish vectors from other variables. We refer to the **entries** of a vector by using subscripts.

The **length** of a vector is the number of entries it has. (normally n)

Example. 
$$\vec{\mathbf{v}} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$$
.

#### Vectors

We will be using vectors and matrices to store and manipulate data.

Definition: A vector  $\vec{v}$  is a column of numbers. Use bold faced letters or vector signs to distinguish vectors from other variables. We refer to the **entries** of a vector by using subscripts.

The **length** of a vector is the number of entries it has. (normally n)

Example. 
$$\vec{\mathbf{v}} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$$
.

Example. Use a vector to represent the age distribution of a population: let  $F_i$  be the number of females with ages in the interval [5i, 5(i + 1)). We can represent the total female population by the vector  $\vec{\mathbf{F}}$ . The females from 0 up to 5 are counted in  $F_0$ ; those from 5 up to 10 are counted in  $F_1$ , etc.

 $\vec{\mathbf{F}} = \begin{vmatrix} F_0 \\ F_1 \\ F_2 \\ \vdots \\ F \end{vmatrix}$ 

Definition: A matrix A is a two-dimensional array of numbers. A matrix with m rows and n columns is called an  $\stackrel{"m by n"}{m \times n}$  matrix.

\* Row by column — Row by column — Row by column \* Note: A vector can be thought of as an  $n \times 1$  matrix.

Definition: A matrix A is a two-dimensional array of numbers. A matrix with m rows and n columns is called an  $m \times n$  matrix.

 $\star$  Row by column — Row by column — Row by column  $\star$ Note: A vector can be thought of as an  $n \times 1$  matrix. Matrices are denoted by a capital letter. Entries are lower case and have two subscripts, the corresponding row and column.

Example. A generic 2 × 3 matrix has the form  $A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix}$ .

Definition: A matrix A is a two-dimensional array of numbers. A matrix with m rows and n columns is called an  $\stackrel{"m by n"}{m \times n}$  matrix.

\* Row by column — Row by column — Row by column \* Note: A vector can be thought of as an  $n \times 1$  matrix. Matrices are denoted by a capital letter. Entries are lower case and have two subscripts, the corresponding row and column. Example. A generic 2 × 3 matrix has the form  $A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix}$ . Definition: The matrix  $B = \begin{bmatrix} 30 & 50 \\ 100 & 250 \end{bmatrix}$  is a square matrix because it has the same number of rows as columns.

Example. We will sometimes interpret a matrix as a **transition** matrix. In this case, the matrix is square (say  $n \times n$ ), where the *n* rows and *n* columns correspond to certain **states** (situations).

An entry  $a_{i,j}$  represents transitioning from state j to state i.

Example. We will sometimes interpret a matrix as a **transition** matrix. In this case, the matrix is square (say  $n \times n$ ), where the *n* rows and *n* columns correspond to certain **states** (situations).

An entry  $a_{i,j}$  represents transitioning from state j to state i.

Example. In our population example, suppose we want to model people getting older, transitioning from one state (age group) to the next. We would set up a transition matrix such as:

#### FROM state:

TO state:

| Γ0 | 0 | 0 | 0 | 0 |
|----|---|---|---|---|
| 1  | 0 | 0 | 0 | 0 |
| 0  | 1 | 0 | 0 | 0 |
| 0  | 0 | 1 | 0 | 0 |
| [0 | 0 | 0 | 1 | 0 |

because everyone in the first age group will move to the second age group  $(a_{2,1})$ , everyone in state 2 will move to state 3 ,  $(a_{3,2})$ , etc.

## Matrix Multiplication

The power of matrices arises in their multiplication.

Given two matrices, A of size  $m \times k$  and B of size  $l \times n$ , we can find the product AB **if and only if** k equals l.

Let A be an  $m \times k$  matrix and B,  $k \times n$ . Then AB is of size  $m \times n$ .

## Matrix Multiplication

The power of matrices arises in their multiplication.

Given two matrices, A of size  $m \times k$  and B of size  $l \times n$ , we can find the product AB **if and only if** k equals l.

Let A be an  $m \times k$  matrix and B,  $k \times n$ . Then AB is of size  $m \times n$ .

To calculate the entries of AB, remember: "Row by column":

$$\begin{bmatrix} 1 & 4 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 6 \\ -4 & 1 & 2 \end{bmatrix} = \begin{bmatrix} \bigcirc & \bigcirc & \bigcirc \\ \bigcirc & \bigcirc & \bigcirc \end{bmatrix}$$

#### Matrix Multiplication

The power of matrices arises in their multiplication.

Given two matrices, A of size  $m \times k$  and B of size  $l \times n$ , we can find the product AB **if and only if** k equals l.

Let A be an  $m \times k$  matrix and B,  $k \times n$ . Then AB is of size  $m \times n$ .

To calculate the entries of AB, remember: "Row by column":

$$\begin{bmatrix} 1 & 4 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 6 \\ -4 & 1 & 2 \end{bmatrix} = \begin{bmatrix} \bigcirc & \bigcirc & \bigcirc \\ \bigcirc & \bigcirc & \bigcirc \end{bmatrix}$$

When we write  $A^2$ , this means AA;  $A^3$  means AAA, etc.

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \bigcirc & \bigcirc \\ 0 & 1 & \bigcirc \\ 0 & 0 & 1 \end{bmatrix}$$

## The power of transition matrices

Example. Modeling a changing population using a matrix model. Let us choose a size of age interval  $\Delta$ =5 years ("Delta"), and divide the female population into states:

State 0: ages [0,5) with  $F_0 = 150$  females State 1: ages [5,10) with  $F_1 = 200$  females State 2: ages [10,15) with  $F_2 = 180$  females State 3: ages [15,20) with  $F_3 = 120$  females State 4: ages [20,25) with  $F_4 = 60$  females

## The power of transition matrices

Example. Modeling a changing population using a matrix model.

Let us choose a size of age interval  $\Delta{=}5$  years ("Delta"), and divide the female population into states:

State 0: ages [0,5) with  $F_0 = 150$  females State 1: ages [5,10) with  $F_1 = 200$  females State 2: ages [10,15) with  $F_2 = 180$  females State 3: ages [15,20) with  $F_3 = 120$  females State 4: ages [20,25) with  $F_4 = 60$  females



## The power of transition matrices

Example. Modeling a changing population using a matrix model.

Let us choose a size of age interval  $\Delta=5$  years ("Delta"), and divide the female population into states:

State 0: ages [0, 5) with  $F_0 = 150$  females  $\vec{\textbf{F}} = \begin{vmatrix} 200 \\ 180 \\ 120 \end{vmatrix}$ State 1: ages [5, 10) with  $F_1 = 200$  females State 2: ages [10, 15) with  $F_2 = 180$  females State 3: ages [15, 20) with  $F_3 = 120$  females State 4: ages [20, 25) with  $F_4 = 60$  females

Using a transition matrix, we can determine the population in 5 years:

$$A \cdot \vec{\mathbf{F}} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}^{1} \begin{bmatrix} 150 \\ 200 \\ 180 \\ 120 \\ 60 \end{bmatrix} = \begin{bmatrix} 0 \\ 150 \\ 200 \\ 180 \\ 120 \end{bmatrix}$$

age distribution vector:

150

The transition matrix in the previous example is not entirely realistic, because people die and are born

To take death into account, modify:

The transition matrix in the previous example is not entirely realistic, because people die and are born

To take death into account, modify: To take birth into account, modify: (i females !)

The transition matrix in the previous example is not entirely realistic, because people die and are born

To take death into account, modify:

To take birth into account, modify:

(i females !)

The resulting transition matrix is called a **Leslie matrix**: Let  $m_i$  be the average number of females that women in state *i* bear. Let  $p_i$  be the fraction of women in state *i* that survive to state i + 1.

The transition matrix in the previous example is not entirely realistic, because people die and are born

To take death into account, modify:

To take birth into account, modify:

(¡ females !)

The resulting transition matrix is called a Leslie matrix:

Let  $m_i$  be the average number of females that women in state *i* bear. Let  $p_i$  be the fraction of women in state *i* that survive to state i + 1.

$$\text{then} \begin{bmatrix} F_0(t+\Delta) \\ F_1(t+\Delta) \\ F_2(t+\Delta) \\ \vdots \\ F_{n-1}(t+\Delta) \end{bmatrix} = \begin{bmatrix} m_0 & m_1 & m_2 & \cdots & m_{n-1} \\ p_0 & 0 & 0 & \cdots & 0 \\ 0 & p_1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & p_{n-2} & 0 \end{bmatrix} \begin{bmatrix} F_0(t) \\ F_1(t) \\ F_2(t) \\ \vdots \\ F_{n-1}(t) \end{bmatrix}$$
$$\vec{F}(t+\Delta) = M \cdot \vec{F}(t)$$

Example. An animal population example (p. 47) The population in three age groups,  $F_0 = 80$ ,  $F_1 = 40$ , and  $F_2 = 20$ .

Suppose that as  $\Delta$  time passes, everyone in state 2 dies, and one quarter of everyone else dies. Also suppose that the age-specific maternity rates are  $m_0 = 0$ ,  $m_1 = 1$ , and  $m_2 = 2$ . Determine the Leslie matrix and the population distributions at times  $\Delta$  and  $2\Delta$ .

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 80 \\ 40 \\ 20 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} = \vec{\mathbf{F}}(\Delta)$$
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} = \vec{\mathbf{F}}(2\Delta)$$

## Matrices and Vectors in Mathematica

We can use Mathematica to do these calculations. (See Tutorial 5.)

Matrices are defined as lists of row vectors. matrix = {{0, 1, 2}, {.75, 0, 0}, {0, .75, 0}} vector = {{80}, {40}, {20}}

# Matrices and Vectors in Mathematica

We can use Mathematica to do these calculations. (See Tutorial 5.)

- Matrices are defined as lists of row vectors. matrix = {{0, 1, 2}, {.75, 0, 0}, {0, .75, 0}} vector = {{80}, {40}, {20}}
- Multiply matrices by using a period (.) matrix.vector
- Find powers of matrices using MatrixPower, not ^ MatrixPower[matrix, 2]

## Matrices and Vectors in Mathematica

We can use Mathematica to do these calculations. (See Tutorial 5.)

- Matrices are defined as lists of row vectors. matrix = {{0, 1, 2}, {.75, 0, 0}, {0, .75, 0}} vector = {{80}, {40}, {20}}
- Multiply matrices by using a period (.) matrix.vector
- Find powers of matrices using MatrixPower, not ^ MatrixPower[matrix, 2]
- So, to find animal population over time, use the code: Table[ , {i, 0, 10}]