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A Markov chain is a sequence of random variables from one sample
space, each corresponding to a successive time interval. From one time
interval to the next, there is a fixed probability ai ,j of transitioning
from state j to state i . No transition depends on a past transition.



Markov Chains 96

Markov Chains

A Markov chain is a sequence of random variables from one sample
space, each corresponding to a successive time interval. From one time
interval to the next, there is a fixed probability ai ,j of transitioning
from state j to state i . No transition depends on a past transition.

Example. Suppose you run a rental company based in Orlando and
Tampa, Florida. People often drive between the cities; cars can be
picked up and dropped off in either city. Suppose that historically,

Orlandon

Orlandon+160%

Tampan+140%

Tampan

Orlandon+130%

Tampan+170%



Markov Chains 96

Markov Chains

A Markov chain is a sequence of random variables from one sample
space, each corresponding to a successive time interval. From one time
interval to the next, there is a fixed probability ai ,j of transitioning
from state j to state i . No transition depends on a past transition.

Example. Suppose you run a rental company based in Orlando and
Tampa, Florida. People often drive between the cities; cars can be
picked up and dropped off in either city. Suppose that historically,
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Orlandon+130%

Tampan+170%

What distribution of cars can the company expect in the long run?

Keep track of these probabilities in an associated transition matrix A.



Markov Chains 97

Markov Chains

We will model this situation with a Markov Chain.

The historical data suggest that with a
probability of 0.6, a car in Orlando at time
n will be in Orlando at time n+1. Use this
and the other expected transition probabil-
ities to form the transition matrix A.
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Or Tm

T
O
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m

O
r [ ]

= A,
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◮ Let on be the probability that a car is in Orlando on day n

◮ Let tn be the probability that a car is in Tampa on day n.

We can represent the distribution of cars at time n with the vector

~xn =

[

on
tn

]

. And so, ~xn =

[

on
tn

]

= A ·

[

on−1

tn−1

]

= A~xn−1.

Given an initial distribution ~x0 =

[

o0
t0

]

,

the expected distribution of cars at time n is ~xn = .
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For example, if they company starts off with twice as many cars in

Orlando as in Tampa, then ~x0 =

[

2/3
1/3

]

, so we expect

~x1 =

[

0.6 0.3
0.4 0.7

] [

2/3
1/3

]

=

[ ]

.
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How do we determine the expected distribution in the long run?
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Definition: Given a Markov Chain with transition matrix A, an
equilibrium distribution is a vector ~xeq that satisfies A~xeq = ~xeq .

[Linear Algebra: ~xeq is an eigenvector corresponding to λ = 1.]

In our example, the equilibrium distribution satisfies
[

0.6 0.3
0.4 0.7

] [

oeq
teq

]

=

[

oeq
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]

.

So solve: 0.6oeq + 0.3teq = oeq and 0.4oeq + 0.7teq = teq .
Both equations reduce to 0.3teq = 0.4oeq , so oeq = 3

4
teq .

Conclusion: If the company has 7000 cars in all, they would expect
that in the long run,

In Markov Chains: ⋆ The sum of the entries in every column of A is 1,
because the total probability of transitioning from state i is 1.

⋆ There is no general rule for what the row sum will be.
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Random walks can be thought of as a special type of Markov chain.
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Shuffling of a deck of cards.
Each state is one of the n! permutations of the n cards.
We transition from one state to another by some rule. Perhaps:

◮ Moving a random card to a new position.

◮ Choosing a pair of random cards and exchanging them.
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A drunk in a bar. A bar patron has had a little too much to drink
and it’s about time to leave the bar. There is an exit directly to his
right and an exit three steps away to his left. The drunk stumbles
randomly one step to the left or one step to the right with equal
probability.
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Simple random walk

A drunk in a bar. A bar patron has had a little too much to drink
and it’s about time to leave the bar. There is an exit directly to his
right and an exit three steps away to his left. The drunk stumbles
randomly one step to the left or one step to the right with equal
probability.

What is the probability that the drunk leaves via the right door?

What is the transition matrix for this random walk?

What is an equilibrium solution for this random walk?
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Win or go home broke! A gambler starts with $500 and makes
$1 bets, winning each with probability p.
The gambler stays until she has made $100 profit or goes broke.

Question. What is the probability that she goes home a winner?

This depends on p. For roulette: p = 18/37 ≈ 48.6%:

The probability of winning $100 before losing $500 is 0.004486

We can model this with a random walk.

There also exist higher-dimensional random walks.
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◮ Record the distribution.

◮ Do some Markov mixing.

◮ Find a random partner. Announce your colors.
◮ Randomly decide whose color will prevail.

(Coin flip or Rock Paper Scissors)
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◮ Record the distribution at multiple times during the
experiment.

What do we expect to occur?

Stand up and make some space to move around.
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