Simulating a doctor's waiting room

Goal: Simulate the queuing behavior at a doctor's office.
Assumptions:

1. Patients arrive on the minutes between 9:00 am and 11:59 am.
2. At most one patient arrives during any minute.
3. The probability that a patient arrives in any one minute is 0.075 .
4. Each patient needs to meet with the doctor for 15 minutes.

Expectations:

1. How many patients does the doctor expect to see in the day?
2. How much time does the doctor expect to spend with patients?

Simulating a doctor's waiting room

How do we simulate the arrival of patients?
Assumptions:

1. Patients arrive on the minutes between 9:00 am and 11:59 am.
2. At most one patient arrives during any minute.
3. The probability that a patient arrives in any one minute is 0.075 .

We let i be the counter for time. $i=0$ occurs at time 9:00 am.
$i=\ldots \quad$ occurs at time 11:59 am.
We set up a For loop:

$$
\begin{aligned}
& \text { For }[i=0, i \\
& \quad \text { newPatient }=\operatorname{If}[\operatorname{RandomReal}[]<=0.075,1,0]]
\end{aligned}
$$

Dealing with the waiting

How do we simulate "waiting" in a "waiting room"?
An arriving patient will wait when

We will keep track of the following variables:
nwait $=$ The number of patients waiting.
endTime $=$ The time when the current patient finishes with the doctor.

$$
\text { busy }=\left\{\begin{array}{l}
1 \text { if the doctor is busy } \\
0 \text { if the doctor is free }
\end{array}\right\}
$$

Simulating a doctor's waiting room

Now translate the flowchart into an algorithm:

Pseudocode:

- Zero out the counters.
- For i from 0 up to 180,
- If the doctor is finishing with a patient at time i, then set busy=0.
- Determine if a new patient arrives (random, probability 0.075). If so, set newPatient to 1 ; otherwise set newPatient to 0 .
- If newPatient == 1, add one to the number waiting (nwait++)
- If the doctor is not busy AND there is a patient waiting,
- Subtract one from the number waiting (nwait--)
- Set the doctor to be busy (busy =1)
- Set the time when the doctor is not busy (endTime = i + 15).

Dealing with the waiting

```
nwait = 0; busy = 0; endTime = 0;
For[i = 0, i < 180, i++,
    If[endTime == i, busy = 0];
    newPatient = If[RandomReal[] <= 0.075, 1, 0];
    If[newPatient == 1, nwait++];
    If[busy == 0 && nwait > 0,
        nwait--; busy = 1; endTime = i + 15];
    ]
    - For i from 0 up to 180,
        - If the doctor is finishing with a patient at time i, then set busy=0.
        - Determine if a new patient arrives (random, probability 0.075).
        If so, set newPatient to 1; otherwise set newPatient to 0.
    - If newPatient == 1, add one to the number waiting (nwait++)
    - If the doctor is not busy AND there is a patient waiting,
    - Subtract one from the number waiting (nwait--)
- Set the doctor to be busy (busy = 1)
- Set the time when the doctor is not busy to i+15.
```


What does the simulation tell us?

We did the simulation, but what was the point?

- How much of the day will the doctor will be busy?
- What is the average number of patients in the waiting room?
- How many people are in the waiting room at noon?
- How late will the doctor stay after noon?

What statistics do we need to keep track of to answer these questions?

This is just one instance; the power of simulation comes from running the model many times and understanding the average behavior.

Gathering data

- How many people are in the waiting room at noon?

```
nwait = 0; busy = 0; endTime = 0;
For[i = 0, i < 180, i++,
    If[endTime == i, busy = 0];
    newPatient = If[RandomReal[] <= 0.075, 1, 0];
    If[newPatient == 1, nwait++];
    If[busy == 0 && nwait > 0,
        nwait--; busy = 1; endTime = i + 15];
    ];
nwait \longleftarrow [Outputs the value after the loop ends.]
```


Running many trials

- How many people are in the waiting room at noon?

Simulate 1000 times using a Table command, generate a histogram.

```
trials = Table[
nwait = 0; busy = 0; endTime = 0;
For[i = 0, i < 180, i++,
    If[endTime == i, busy = 0];
    newPatient = If[RandomReal[] <= 0.075, 1, 0];
    If[newPatient == 1, nwait++];
    If [busy == 0 && nwait > 0,
        nwait--; busy = 1; endTime = i + 15];
    ];
nwait ], {j,1000}]
Mean[trials] \longleftarrow [Average: 3.105]
Histogram[trials]
```


Gathering data

- How late will the doctor stay after noon?

```
nwait = 0; busy = 0; endTime = 0;
For[i = 0, i < 180, i++,
    If[endTime == i, busy = 0];
    newPatient = If[RandomReal[] <= 0.075, 1, 0];
    If[newPatient == 1, nwait++];
    If[busy == 0 && nwait > 0,
        nwait--; busy = 1; endTime = i + 15];
    ];
*****
\(\uparrow\) [How to calculate how long the doctor has to stay after noon?]
Mean: 51 minutes (does this make sense?)
```


Gathering and plotting time-dependent data

- How much of the day will the doctor will be busy?

Gathering and plotting time-dependent data

- What is the average number of patients in the waiting room?

Keep track of number of waiting patients by using a variable numWait. nwait = 0; busy = 0; endTime = 0; For $\mathrm{i}=0$, i 180, i++,

If [endTime == i, busy = 0];
newPatient $=$ If[RandomReal[] <= 0.075, 1, 0];
If[newPatient == 1, nwait++];
If [busy == 0 \&\& nwait > 0, nwait--; busy = 1; endTime = i + 15];
numWait [i]=nwait; \longleftarrow [this copies nwait into numWait [i].]
]; $\quad \downarrow$ [Puts data into a list.]
waitList=Table[numWait[i],i,0,179] $\mathrm{m}=$ Mean [waitList] \longleftarrow [Average patients.] p1=ListLinePlot[waitList];
p2=Plot[m,x,0,179];

Show [p1,p2]

