Deterministic versus Probabilistic

Two differing views of modeling:

Deterministic: All data is known beforehand

- Once the system starts, you know exactly what is going to happen.
- Example. Predicting the amount of money in a bank account.
 - ▶ If you know the initial deposit, and the interest rate, then:
 - You can determine the amount in the account after one year.

Probabilistic: Element of chance is involved

- You know the likelihood that something will happen, but you don't know when it will happen.
- Example. Roll a die until it comes up '5'.
 - \blacktriangleright Know that in each roll, a '5' will come up with probability 1/6.
 - Don't know exactly when, but we can predict well.

Basic Probability

Definition: An **experiment** is any process whose outcome is uncertain. *Definition:* The set of all possible outcomes of an experiment is called the **sample space**, denoted X (or S).

Definition: The **probability** of x, denoted p(x), is a number between 0 and 1 that measures its likelihood of occurring.

Example. Rolling a die is an experiment; the sample space is $\{__\}$. The individual probabilities are all p(i) =

Definition: An **event** *E* is something that can happen. (In other words, it is a subset of the sample space: $E \subset X$.) *Definition:* The **probability** of an event *E*, p(E), is the sum of the probabilities of the outcomes making up the event.

Example. The roll of the die ... [is '5'] or [is odd] or [is prime] ... Example. $p(E_1) =$ _____, $p(E_2) =$ _____, $p(E_3) =$ _____.

Determining Probabilities

Three methods for modeling the probability of an occurrence:

- Relative frequency method: Repeat an experiment many times; assign as the probability the fraction <u>occurrences</u> <u># experiments run</u>.
 Example. Hit a bulls-eye 17 times out of 100; set the probability of hitting a bulls-eye to be p(bulls-eye) = 0.17.
- Equal probability method: Assume all outcomes have equal probability; assign as the probability $\frac{1}{\# \text{ of possible outcomes}}$. Example. Each side of a dodecahedral die is equally likely to appear; decide to set $p(1) = \frac{1}{12}$.

Subjective guess method:

If neither method above applies, give it your best guess. Example. How likely is it that your friend will come to a party?

Independent Events

Definition: Two events are **independent** if the probabilities of occurrence do not depend on one another.

Example. Roll a Red die and roll a Blue die.

- Event 1: Blue die rolls a 1. Event 2: Red die rolls a 6. These events are independent.
- Event 1: Blue die rolls a 1. Event 2: Blue die rolls a 6. These events are dependent.

Example. Pick a card, any card! Shuffle a deck of 52 cards.

Event 1: Pick a first card. Event 2: Pick a second card. These events are

Example. You wake up and don't know what day it is.

- Event 1: Today is a weekday.
- Event 2: Today is cloudy.
- Event 3: Today is Modeling day.

 E_1 vs. E_2

 E_2 vs. E_3

 E_1 vs. E_3

Independent Events

When events E₁ (in X₁) and E₂ (in X₂) are independent events, p(E₁ and E₂) = p(E₁)p(E₂).
Example. What is the probability that today is a cloudy weekday?
For events E₁ (in X₁) and E₂ (in X₂), p(E₁ or E₂) = 1 - p((not E₁) and (not E₂)) (when indep.) = 1 - (1 - p(E₁))(1 - p(E₂)) = p(E₁) + p(E₂) - p(E₁)p(E₂)

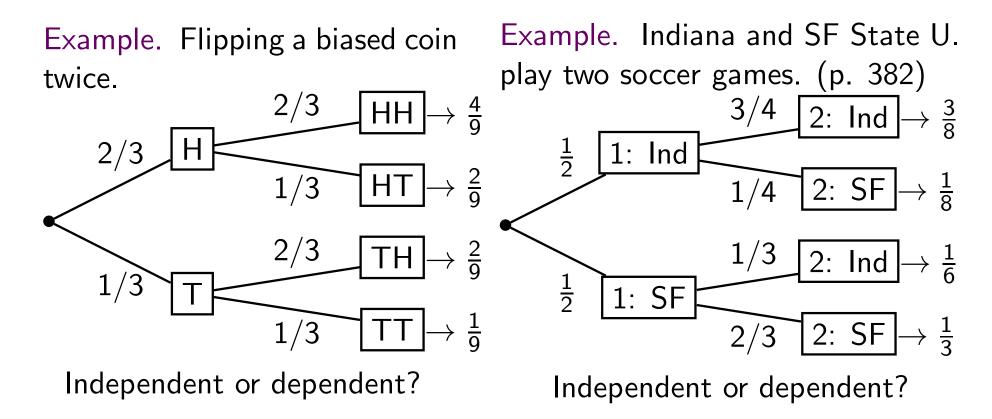
Proof: Venn diagram / rectangle

Example. What is the probability that you roll a blue 1 OR a red 6? **This does not work with** *dependent* **events.**

Decision Trees

Definition: A **multistage** experiment is one in which each stage is a simpler experiment. They can be represented using a **tree diagram**.

Each branch of the tree represents one outcome x of that level's experiment, and is labeled by p(x).



Expected value / mean

"Even with the randomness, what do you expect to happen?"

Suppose that each outcome x in a sample space has a number r(x) attached to it. (Examples: number of pips on a die, amount of money you win on a bet, inches of precipitation falling)

This function *r* is called a **random variable**.

Definition: The **expected value** or **mean** of a random variable is the sum of the numbers weighted by their probabilities. Mathematically,

 $\mu = \mathbb{E}[X] = p(x_1)r(x_1) + p(x_2)r(x_2) + \cdots + p(x_n)r(x_n).$

Idea: With probability $p(x_1)$, there is a contribution of $r(x_1)$, etc. Example. How many heads would you expect on average when flipping a biased coin twice?

Example. How many wins do you expect Indiana to have?

Question: Interpretation of this number $\mathbb{E}[X]$?

Expected value / mean

When two random variables are on two **independent** experiments, the expected value operation behaves nicely:

$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
 and $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

Example. We throw a red die and a blue die. What is the expected value of the sum of the dice and the product of the dice?

b + r	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

<i>b</i> * ^{<i>r</i>}	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

 $\mathbb{E}[X + Y] =$ $\mathbb{E}[XY] =$

Component Reliability

Many systems consist of components pieced together.

Definition: The **reliability** of a system is its probability of success.

To calculate system reliability, first determine how reliable each component is; then apply rules from probability.

Example. Launch the space shuttle into space with a three-stage rocket.

$$\mathsf{Stage}\ 1 \to \fbox{Stage}\ 2 \to \fbox{Stage}\ 3$$

 \star In order for the rocket to launch,

Let $R_1 = 90\%$, $R_2 = 95\%$, $R_3 = 96\%$ be the reliabilities of Stages 1–3. p(system success) = p(S1 success and S2 success and S3 success)

 \star

Component Reliability

Example. Communicating with the space shuttle.

There are two independent methods in which earth can communicate with the space shuttle

- ► A microwave radio with reliability $R_1 = 0.95$
- ▶ An FM radio, with reliability $R_2 = 0.96$.
- \star In order to be able to communicate with the shuttle,

p(system success) = p(MW radio success or FM radio success)