Self-Assessment for Wednesday 2/28

This self-assessment covers material from Sections 3.1–3.10 and 4.1–4.2 of Modeling and Simulation in Python.

It is open book, open notes, open computer. You can take as long as you need. You should make a reasonable effort to complete the diagnostic on your own. Then check your answers with a classmate.

Vocabulary (for Sections 4.1–4.2)

Fill in the blanks in the following sentences with the words that make the most sense.

- 1. In a Pandas Series, missing data are represented by the special value ______, which is shorthand for ______.
- 2. We can drop missing data using the _____ function.
- 3. Write a few sentences that answer the following question:

What is the difference between a prediction and a projection?

Code (for Sections 3.1-3.10)

 Write a function called flip_every_day that takes in n, p, and num_days as parameters. It should flip n times a coin that gives heads with probability p everyday for num_days days, and stores the number of heads each day in a TimeSeries object, and return this TimeSeries object.

Hint: To count the days, use linrange(1,num_days).

2. As you saw in the Chapter 3 notebook, you can compute the maximum absolute difference between two TimeSeries objects like this max(abs(series1 - series2)). Wrap that line of code in a function named max_abs_diff that takes two TimeSeries objects as parameters and returns the maximum absolute difference between them.

- 3. Suppose you have two functions:
 - run_measurement takes no parameters and returns a TimeSeries of measurements.
 - run_simulation takes a TimeSeries of measurements as a parameter, runs a simulation based on the measurements, and returns a TimeSeries with the simulation results.

Write a function called compare_measurement_to_simulation that takes no parameters, uses run_measurement and run_simulation to compute two TimeSeries objects, and returns the maximum absolute difference between the measurements and simulation results.