1. (10 pts) For the sequences \mathcal{S}_{1} and \mathcal{S}_{2} given below, determine whether the sequence is graphic. If it is, give a graph that has \mathcal{S} as its degree sequence. If not, prove why there is no such graph with \mathcal{S} as its degree sequence.

$$
\left(\mathcal{S}_{1}\right)=3322221100
$$

$$
\left(\mathcal{S}_{2}\right)=6432111
$$

2. (10 pts) Prove that in every graph the number of vertices of odd degree is even.
3. (10 pts) For this question, recall that $\omega(G)$ is the size of the largest complete graph that is a subgraph of G. We know that the chromatic number $\chi(G)$ is always greater than or equal to the clique number $\omega(G)$. Give an example of a graph that shows that these two values are not always equal, and give an explanation to back up your claim.
4. (15 pts) This question deals with the following graph W.

(a) (10 pts) Find, with proof, the edge chromatic number $\chi^{\prime}(W)$.
(b) (5 pts) Does the graph W have a perfect matching decomposition? Why or why not?
5. (15 pts) Question 5.
(a) (4 pts) Give two non-isomorphic spanning trees of the wheel graph W_{5}.
(b) (5 pts) Explain why the two subgraphs you give are spanning trees.
(c) (6 pts) Prove that the subgraphs you provide are not isomorphic.
