1. (12 pts) Answer the following true or false questions in your blue book. There is no partial credit.
(a) \mathbf{T} or \mathbf{F} : In every cycle graph C_{n}, a maximal matching is always a maximum matching.
(b) \mathbf{T} or \mathbf{F} : There is a closed knight's tour on a 4×5 rectangular board.
(c) Let G be a connected graph with degree sequence ($7,5,4,4,4,4,2,2,2,2$).
\mathbf{T} or \mathbf{F} : It is possible to create a drawing of G without picking up your pencil.
(d) \mathbf{T} or \mathbf{F} : The cube graph is self-dual.
2. (8 pts) Determine the chromatic number of this graph Q : [Hint: Use a known theorem, do not actually color Q.]
3. (10 pts) Show that the thickness of K_{6} is 2 . Use an argument that involves a decomposition of K_{6}.

[Important: DO NOT use a formula.]
4. (10 pts) Let $N=(V, E)$ be a network with capacities c_{e} on every edge $e \in E$. Suppose that φ is a flow on N and that for a subset $X \subset V,\left[X, X^{c}\right]$ is an st-cut in N. Explain precisely why the throughput of φ must be less than or equal to the capacity of $\left[X, X^{c}\right]$.
[In this problem φ is not necessarily a max flow, nor is $\left[X, X^{c}\right]$ a min cut.]
5. (10 pts) Use the Hungarian algorithm to find a maximum matching on the graph below, starting with the given matching.
[Feel free to use the extra copies of the graph that are provided.]

