- 1. (12 pts) Answer the following true or false questions in your blue book. There is no partial credit.
 - (a) **T** or **F**: In every cycle graph C_n , a maximal matching is always a maximum matching.
 - (b) **T** or **F**: There is a closed knight's tour on a 4×5 rectangular board.
 - (c) Let G be a connected graph with degree sequence (7, 5, 4, 4, 4, 4, 2, 2, 2, 2). **T** or **F**: It is possible to create a drawing of G without picking up your pencil.
 - (d) \mathbf{T} or \mathbf{F} : The cube graph is self-dual.
- 2. (8 pts) Determine the chromatic number of this graph Q: [*Hint: Use a known theorem, do not actually color Q.*]
- 3. (10 pts) Show that the thickness of K₆ is 2. Use an argument that involves a decomposition of K₆.
 [Important: DO NOT use a formula.]

4. (10 pts) Let N = (V, E) be a network with capacities c_e on every edge $e \in E$. Suppose that φ is a flow on N and that for a subset $X \subset V$, $[X, X^c]$ is an *st*-cut in N. Explain precisely why the throughput of φ must be less than or equal to the capacity of $[X, X^c]$.

[In this problem φ is not necessarily a max flow, nor is $[X, X^c]$ a min cut.]

5. (10 pts) Use the Hungarian algorithm to find a maximum matching on the graph below, starting with the given matching.

[Feel free to use the extra copies of the graph that are provided.]

