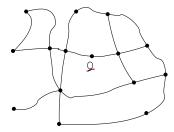
Course Notes

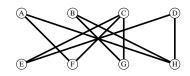
Graph Theory, Spring 2014

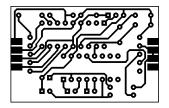
Queens College, Math 634

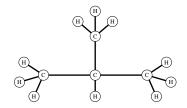
Prof. Christopher Hanusa

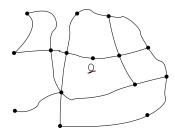
http://qcpages.qc.edu/~chanusa/courses/634sp14/





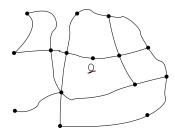






A graph is made up of dots and lines.

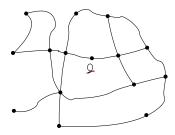
A "dot" is called a **vertex** (or **node**, **point**, **junction**) One **vertex** — Two **vertices**.



A graph is made up of dots and lines.

A "dot" is called a **vertex** (or **node**, **point**, **junction**) One **vertex** — Two **vertices**.

A "line" is called an **edge** (or **arc**), and always connects two vertices.



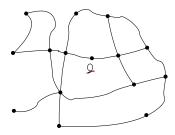
A graph is made up of dots and lines.

A "dot" is called a **vertex** (or **node**, **point**, **junction**) One **vertex** — Two **vertices**.

A "line" is called an **edge** (or **arc**), and always connects two vertices.

A road map can be thought of as a graph.

- Represent each city or intersection as a vertex
- Roads correspond to edges.



A graph is made up of dots and lines.

A "dot" is called a **vertex** (or **node**, **point**, **junction**) One **vertex** — Two **vertices**.

A "line" is called an **edge** (or **arc**), and always connects two vertices.

A road map can be thought of as a graph.

- Represent each city or intersection as a vertex
- Roads correspond to edges.

However, a graph is an abstract concept.

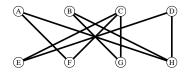
- It doesn't matter whether the edge is straight or curved.
- ▶ All we care about is which vertices are connected.

Suppose that:

Erika likes cherries and dates. Frank likes apples and cherries. Greg likes bananas and cherries. Helen likes apples, bananas, dates.

Suppose that:

Erika likes cherries and dates. Frank likes apples and cherries. Greg likes bananas and cherries. Helen likes apples, bananas, dates.

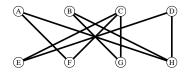


A graph can illustrate these relationships.

- Create one vertex for each person and one vertex for each fruit.
- Create an edge between person vertex v and fruit vertex w if person v likes fruit w.

Suppose that:

Erika likes cherries and dates. Frank likes apples and cherries. Greg likes bananas and cherries. Helen likes apples, bananas, dates.



A graph can illustrate these relationships.

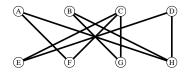
- Create one vertex for each person and one vertex for each fruit.
- Create an edge between person vertex v and fruit vertex w if person v likes fruit w.

Question. Is there a way for each person to receive a piece of fruit he or she likes?

Answer.

Suppose that:

Erika likes cherries and dates. Frank likes apples and cherries. Greg likes bananas and cherries. Helen likes apples, bananas, dates.



A graph can illustrate these relationships.

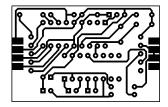
- Create one vertex for each person and one vertex for each fruit.
- Create an edge between person vertex v and fruit vertex w if person v likes fruit w.

Question. Is there a way for each person to receive a piece of fruit he or she likes?

Answer.

Related topics: assignments, perfect matchings, counting questions.

Why does a circuit board look like this?

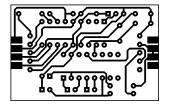


Why does a circuit board look like this?

Question. Is graph G planar?

If so, how can we draw it without crossings?

▶ If not, then how close to being planar is it?

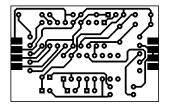


Why does a circuit board look like this?

Question. Is graph G planar?

- ▶ If so, how can we draw it without crossings?
- If not, then how close to being planar is it?

Related topics: planarity, non-planarity stats, graph embeddings

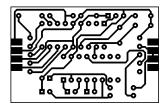


Why does a circuit board look like this?

Question. Is graph G planar?

- If so, how can we draw it without crossings?
- If not, then how close to being planar is it?

Related topics: planarity, non-planarity stats, graph embeddings



Also related to a circuit board:

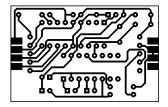
- ▶ Where to drill the holes?
- How to drill them as fast as possible?

Why does a circuit board look like this?

Question. Is graph G planar?

- If so, how can we draw it without crossings?
- If not, then how close to being planar is it?

Related topics: planarity, non-planarity stats, graph embeddings

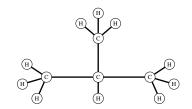


Also related to a circuit board:

- ▶ Where to drill the holes?
- How to drill them as fast as possible?

Related topics: Traveling Salesman, computer algorithms, optimization

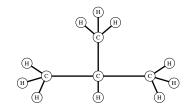
Graphs are used in Chemistry to draw molecules. (isobutane)



Graphs are used in Chemistry to draw molecules. (isobutane)

Note:

- ▶ This graph is *connected*. (Not true in general.)
- ▶ There are no *cycles* in this graph.



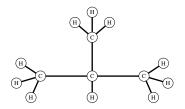
Graphs are used in Chemistry to draw molecules. (isobutane)

Note:

- ► This graph is *connected*. (Not true in general.)
- ▶ There are no *cycles* in this graph.

Connected graphs with no cycles are called trees.

Trees are some of the nicest graphs.



Graphs are used in Chemistry to draw molecules. (isobutane)

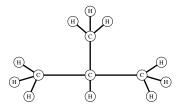
Note:

- ▶ This graph is *connected*. (Not true in general.)
- ▶ There are no *cycles* in this graph.

Connected graphs with no cycles are called trees.

Trees are some of the nicest graphs.

We will work to understand some of their properties.



To do well in this class:

Come to class prepared.

- Print out and read over course notes.
- Read sections before class.

Form good study groups.

- Discuss homework and classwork.
- Bounce proof ideas around.
- You will depend on this group.

Put in the time.

- ▶ Three credits = (at least) nine hours / week out of class.
- Homework stresses key concepts from class; learning takes time.

Stay in contact.

- If you are confused, ask questions (in class and out).
- Don't fall behind in coursework or project.
- ▶ I need to understand your concerns.

Mini-assignments due daily; homeworks posted the week before. Please fill out the notecard: Name, something related to name, picture.

Definition. A graph G is a pair of sets (V, E), where

- ► *V* is the set of *vertices*.
- ► *E* is the set of *edges*.

Definition. A graph G is a pair of sets (V, E), where

- ► *V* is the set of *vertices*.
 - ► A vertex can be anything.
- *E* is the set of *edges*.

Definition. A graph G is a pair of sets (V, E), where

- ► *V* is the set of *vertices*.
 - A vertex can be anything.
- ► *E* is the set of *edges*.
 - ► An edge is an unordered pair of vertices from V.

Definition. A graph G is a pair of sets (V, E), where

- ► *V* is the set of *vertices*.
 - A vertex can be anything.
- ► *E* is the set of *edges*.
 - \blacktriangleright An edge is an unordered pair of vertices from V.

[Sometimes we will write V(G) and E(G).]

Definition. A graph G is a pair of sets (V, E), where

- ► *V* is the set of *vertices*.
 - A vertex can be anything.
- ► *E* is the set of *edges*.

► An edge is an unordered pair of vertices from *V*. [Sometimes we will write *V*(*G*) and *E*(*G*).]

Example. Let
$$G = (V, E)$$
, where
 $V = \{v_1, v_2, v_3, v_4\}$,
 $E = \{e_1, e_2, e_3, e_4, e_5\}$, and
 $e_1 = \{v_1, v_2\}$, $e_2 = \{v_2, v_3\}$,
 $e_3 = \{v_1, v_3\}$, $e_4 = \{v_1, v_4\}$, $e_5 = \{v_3, v_4\}$.

Definition. A graph G is a pair of sets (V, E), where

- ► V is the set of *vertices*.
 - A vertex can be anything.
- ► *E* is the set of *edges*.

► An edge is an unordered pair of vertices from *V*. [Sometimes we will write *V*(*G*) and *E*(*G*).]

v,

 e_1

 e_3

v.,

Example. Let
$$G = (V, E)$$
, where
 $V = \{v_1, v_2, v_3, v_4\}$,
 $E = \{e_1, e_2, e_3, e_4, e_5\}$, and
 $e_1 = \{v_1, v_2\}$, $e_2 = \{v_2, v_3\}$,
 $e_3 = \{v_1, v_3\}$, $e_4 = \{v_1, v_4\}$, $e_5 = \{v_3, v_4\}$.

Definition. A graph G is a pair of sets (V, E), where

- V is the set of vertices.
 - A vertex can be anything.
- ► *E* is the set of *edges*.

► An edge is an unordered pair of vertices from *V*. [Sometimes we will write *V*(*G*) and *E*(*G*).]

Example. Let
$$G = (V, E)$$
, where
 $V = \{v_1, v_2, v_3, v_4\}$,
 $E = \{e_1, e_2, e_3, e_4, e_5\}$, and
 $e_1 = \{v_1, v_2\}$, $e_2 = \{v_2, v_3\}$,
 $e_3 = \{v_1, v_3\}$, $e_4 = \{v_1, v_4\}$, $e_5 = \{v_3, v_4\}$.

v.

▶ We often write e₁ = v₁v₂ with the understanding that order does not matter.

Definition. A graph G is a pair of sets (V, E), where

- ► *V* is the set of *vertices*.
 - A vertex can be anything.
- ► *E* is the set of *edges*.

► An edge is an unordered pair of vertices from *V*. [Sometimes we will write *V*(*G*) and *E*(*G*).]

Example. Let
$$G = (V, E)$$
, where
 $V = \{v_1, v_2, v_3, v_4\}$,
 $E = \{e_1, e_2, e_3, e_4, e_5\}$, and
 $e_1 = \{v_1, v_2\}$, $e_2 = \{v_2, v_3\}$,
 $e_3 = \{v_1, v_3\}$, $e_4 = \{v_1, v_4\}$, $e_5 = \{v_3, v_4\}$.

v.

▶ We often write e₁ = v₁v₂ with the understanding that order does not matter.

Notation: # vertices = $|V| = _=_$. # edges = $|E| = _=$ _.

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are **adjacent**.

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are **adjacent**.

When talking about a vertex-edge pair, we will say that v_1 is **incident** to/with e_1 when v_1 is an **endpoint** of e_1 .

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are **adjacent**.

When talking about a vertex-edge pair, we will say that v_1 is **incident** to/with e_1 when v_1 is an **endpoint** of e_1 .

For now, we will only consider finite, simple graphs.

- G is finite means $|V| < \infty$. (Although infinite graphs do exist.)
- ▶ G is simple means that G has no multiple edges nor loops.

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are **adjacent**.

When talking about a vertex-edge pair, we will say that v_1 is **incident** to/with e_1 when v_1 is an **endpoint** of e_1 .

For now, we will only consider finite, simple graphs.

- G is finite means $|V| < \infty$. (Although infinite graphs do exist.)
- ▶ G is simple means that G has no multiple edges nor loops.
 - A loop is an edge that connects a vertex to itself.

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are **adjacent**.

When talking about a vertex-edge pair, we will say that v_1 is **incident** to/with e_1 when v_1 is an **endpoint** of e_1 .

For now, we will only consider finite, simple graphs.

- G is finite means $|V| < \infty$. (Although infinite graphs do exist.)
- ▶ *G* is **simple** means that *G* has no multiple edges nor loops.
 - A loop is an edge that connects a vertex to itself.
 - ▶ Multiple edges occurs when the same unordered pair of vertices appears more than once in *E*.

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are **adjacent**.

When talking about a vertex-edge pair, we will say that v_1 is **incident** to/with e_1 when v_1 is an **endpoint** of e_1 .

For now, we will only consider finite, simple graphs.

- G is finite means $|V| < \infty$. (Although infinite graphs do exist.)
- ▶ *G* is **simple** means that *G* has no multiple edges nor loops.
 - ▶ A loop is an edge that connects a vertex to itself.
 - ▶ Multiple edges occurs when the same unordered pair of vertices appears more than once in *E*.

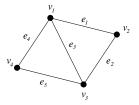
When multiple edges are allowed (but not loops): called **multigraphs**. When loops (& mult. edge) are allowed: called **pseudographs**.

Degree of a vertex

The **degree** of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

 $deg(v_1) =$ ____, $deg(v_2) =$ ____, $deg(v_3) =$ ____, $deg(v_4) =$ ____.

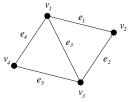


Degree of a vertex

The **degree** of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

 $deg(v_1) =$ ____, $deg(v_2) =$ ____, $deg(v_3) =$ ____, $deg(v_4) =$ ____.

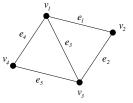


If deg(v) = 0, we call v an **isolated vertex**. If deg(v) = 1, we call v an **end vertex** or **leaf**. If deg(v) = k for all v, we call G a k-regular graph.

The **degree** of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

 $deg(v_1) =$ ____, $deg(v_2) =$ ____, $deg(v_3) =$ ____, $deg(v_4) =$ ____.



If deg(v) = 0, we call v an **isolated vertex**. If deg(v) = 1, we call v an **end vertex** or **leaf**.

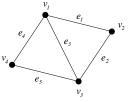
If deg(v) = k for all v, we call G a k-regular graph.

The **degree sum** of a graph is the sum of the degrees of all vertices. *Degree sum exploration:*

The **degree** of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

 $deg(v_1) =$ ____, $deg(v_2) =$ ____, $deg(v_3) =$ ____, $deg(v_4) =$ ____.



If deg(v) = 0, we call v an **isolated vertex**. If deg(v) = 1, we call v an **end vertex** or **leaf**.

If deg(v) = k for all v, we call G a k-regular graph.

The degree sum of a graph is the sum of the degrees of all vertices.

Degree sum exploration:

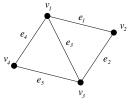
Q. What is
$$deg(v_1) + deg(v_2) + deg(v_3) + deg(v_4)$$
?

$$\mathsf{A.}\ \sum_{v\in V} \mathsf{deg}(v) =$$

The **degree** of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

 $deg(v_1) =$ ____, $deg(v_2) =$ ____, $deg(v_3) =$ ____, $deg(v_4) =$ ____.



If deg(v) = 0, we call v an **isolated vertex**. If deg(v) = 1, we call v an **end vertex** or **leaf**.

If deg(v) = k for all v, we call G a k-regular graph.

The degree sum of a graph is the sum of the degrees of all vertices.

Degree sum exploration:

Q. What is
$$deg(v_1) + deg(v_2) + deg(v_3) + deg(v_4)?$$

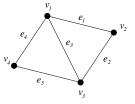
A. $\sum_{v \in V} \deg(v) =$ A. m =

Q. How many edges in G?

The **degree** of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

 $deg(v_1) =$ ____, $deg(v_2) =$ ____, $deg(v_3) =$ ____, $deg(v_4) =$ ____.



If deg(v) = 0, we call v an **isolated vertex**. If deg(v) = 1, we call v an **end vertex** or **leaf**.

If deg(v) = k for all v, we call G a k-regular graph.

The degree sum of a graph is the sum of the degrees of all vertices.

Degree sum exploration:

Q. What is
$$\deg(v_1) + \deg(v_2) + \deg(v_3) + \deg(v_4)$$
?

Q. How many edges in G?

A. $\sum_{v \in V} \deg(v) =$ A. m = How are these related?

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Proof. We count the number of vertex-edge incidences in two ways.

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Proof. We count the number of vertex-edge incidences in two ways. Vertex-centric: For one v, how many v-e incidences are there?

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Proof. We count the number of vertex-edge incidences in two ways.

Vertex-centric: For one v, how many v-e incidences are there? _____. So the total number of vertex-edge incidences in G is ______.

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Proof. We count the number of vertex-edge incidences in two ways.

Vertex-centric: For one *v*, how many *v*-*e* incidences are there? _____. So the total number of vertex-edge incidences in *G* is ______. Edge-centric: For one *e*, how many *v*-*e* incidences are there? _____.

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Proof. We count the number of vertex-edge incidences in two ways.

Vertex-centric: For one *v*, how many *v*-*e* incidences are there? _____. So the total number of vertex-edge incidences in *G* is ______. Edge-centric: For one *e*, how many *v*-*e* incidences are there? _____. So the total number of vertex-edge incidences in *G* is ______.

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m.$$

Proof. We count the number of vertex-edge incidences in two ways.

Vertex-centric: For one v, how many v-e incidences are there? _____.
So the total number of vertex-edge incidences in G is ______.
Edge-centric: For one e, how many v-e incidences are there? ______.
So the total number of vertex-edge incidences in G is ______.

Since we have counted the same quantity in two different ways, the two values are equal. $\hfill \Box$

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Proof. We count the number of vertex-edge incidences in two ways.

Vertex-centric: For one *v*, how many *v*-*e* incidences are there? _____. So the total number of vertex-edge incidences in *G* is ______. Edge-centric: For one *e*, how many *v*-*e* incidences are there? _____. So the total number of vertex-edge incidences in *G* is ______.

Since we have counted the same quantity in two different ways, the two values are equal. $\hfill \Box$

Corollary: The degree sum of a graph is always even.

Definition. The **degree sequence** for a graph G is the list of the degrees of its vertices in weakly decreasing order.

Definition. The **degree sequence** for a graph G is the list of the degrees of its vertices in weakly decreasing order.

In our example above, the degree sequence is:

Definition. The **degree sequence** for a graph G is the list of the degrees of its vertices in weakly decreasing order.

In our example above, the degree sequence is:

Duh. Every simple graph has a degree sequence.

Definition. The **degree sequence** for a graph G is the list of the degrees of its vertices in weakly decreasing order.

In our example above, the degree sequence is: _____

Duh. Every simple graph has a degree sequence.

Question. Does every sequence have a simple graph?

Answer.

Definition. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence.

Definition. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence.

Question. How can we tell if a sequence S is graphic?

Definition. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence.

Question. How can we tell if a sequence S is graphic?

Find a graph with degree sequence S.

Definition. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence.

Question. How can we tell if a sequence S is graphic?

Find a graph with degree sequence S.

Definition. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence.

Question. How can we tell if a sequence S is graphic?

- Find a graph with degree sequence S.
- OR: Use the Havel-Hakimi algorithm in Theorem 1.1.2.
 - ▶ Initialization. Start with Sequence S_1 .

Definition. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence.

Question. How can we tell if a sequence S is graphic?

▶ Find a graph with degree sequence S.

- ▶ Initialization. Start with Sequence S_1 .
- ▶ Step 1. Remove the first number (call it *s*).

Definition. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence.

Question. How can we tell if a sequence S is graphic?

▶ Find a graph with degree sequence S.

- ▶ Initialization. Start with Sequence S_1 .
- ▶ Step 1. Remove the first number (call it *s*).
- Step 2. Subtract 1 from each of the next s numbers in the list.

Definition. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence.

Question. How can we tell if a sequence S is graphic?

▶ Find a graph with degree sequence S.

- ▶ Initialization. Start with Sequence S_1 .
- ▶ Step 1. Remove the first number (call it *s*).
- **Step 2**. Subtract 1 from each of the next *s* numbers in the list.
- ► Step 3. Reorder the list if necessary into non-increasing order. Call the resulting list Sequence S₂.

Definition. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence.

Question. How can we tell if a sequence S is graphic?

▶ Find a graph with degree sequence S.

OR: Use the Havel-Hakimi algorithm in Theorem 1.1.2.

- ▶ Initialization. Start with Sequence S_1 .
- ▶ Step 1. Remove the first number (call it *s*).
- ▶ Step 2. Subtract 1 from each of the next *s* numbers in the list.
- ► Step 3. Reorder the list if necessary into non-increasing order. Call the resulting list Sequence S₂.

Theorem 1.1.2. Sequence S_1 is graphic iff Sequence S_2 is graphic.

Definition. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence.

Question. How can we tell if a sequence S is graphic?

▶ Find a graph with degree sequence S.

OR: Use the Havel-Hakimi algorithm in Theorem 1.1.2.

- ▶ Initialization. Start with Sequence S_1 .
- ▶ Step 1. Remove the first number (call it *s*).
- ▶ Step 2. Subtract 1 from each of the next *s* numbers in the list.
- ► Step 3. Reorder the list if necessary into non-increasing order. Call the resulting list Sequence S₂.

Theorem 1.1.2. Sequence S_1 is graphic iff Sequence S_2 is graphic.

Iterate this algorithm until either:

(a) It is easy to see S_2 is graphic. (b) S_2 has negative numbers.

Definition. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence.

Question. How can we tell if a sequence S is graphic?

▶ Find a graph with degree sequence S.

OR: Use the Havel-Hakimi algorithm in Theorem 1.1.2.

- ▶ Initialization. Start with Sequence S_1 .
- ▶ Step 1. Remove the first number (call it *s*).
- Step 2. Subtract 1 from each of the next s numbers in the list.
- ► Step 3. Reorder the list if necessary into non-increasing order. Call the resulting list Sequence S₂.

Theorem 1.1.2. Sequence S_1 is graphic iff Sequence S_2 is graphic.

Iterate this algorithm until either:

(a) It is easy to see S_2 is graphic. (b) S_2 has negative numbers.

Examples: 7765333110 and 6644442

Notation: Define the degree sequences to be: $S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$ $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic iff Sequence S_2 is graphic.

Notation: Define the degree sequences to be: $S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$ $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic **iff** Sequence S_2 is graphic. *Proof.* (S_2 graphic $\Rightarrow S_1$ graphic)

Notation: Define the degree sequences to be: $S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$ $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic iff Sequence S_2 is graphic.

Proof. (S_2 graphic $\Rightarrow S_1$ graphic) Suppose that S_2 is graphic. Therefore,

Notation: Define the degree sequences to be: $S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$ $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic iff Sequence S_2 is graphic.

Proof. (S_2 graphic $\Rightarrow S_1$ graphic) Suppose that S_2 is graphic. Therefore, there exists a graph G_2 with degree sequence S_2 .

Notation: Define the degree sequences to be: $S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$ $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic iff Sequence S_2 is graphic.

Proof. (S_2 graphic $\Rightarrow S_1$ graphic) Suppose that S_2 is graphic. Therefore, there exists a graph G_2 with degree sequence S_2 . We will construct a graph G_1 that has S_1 as its degree sequence.

Notation: Define the degree sequences to be: $S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$ $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic iff Sequence S_2 is graphic.

Proof. (S_2 graphic $\Rightarrow S_1$ graphic) Suppose that S_2 is graphic. Therefore, there exists a graph G_2 with degree sequence S_2 . We will construct a graph G_1 that has S_1 as its degree sequence.

Question: Can this argument work in reverse?

Proof. (S_1 graphic $\Rightarrow S_2$ graphic)

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore,

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 .

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages.

Game plan:

 $G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages.

Game plan:

 $G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$

▶ Start with *G*¹ which we know exists.

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages.

Game plan: $G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$

Start with G_1 which we know exists.

▶ At each stage, create a new graph G_i from G_{i-1} such that

• G_i has degree sequence S_1 .

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages.

Game plan:

 $G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$

Start with G_1 which we know exists.

▶ At each stage, create a new graph G_i from G_{i-1} such that

- G_i has degree sequence S_1 .
- ► The vertex of degree s in G_i is adjacent to MORE of the highest degree vertices than G_{i-1}.

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages.

Game plan:

 $G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$

- ▶ Start with *G*₁ which we know exists.
- ▶ At each stage, create a new graph G_i from G_{i-1} such that
 - G_i has degree sequence S_1 .
 - ► The vertex of degree s in G_i is adjacent to MORE of the highest degree vertices than G_{i-1}.
- After some number of iterations, the vertex of highest degree s in G_a will be adjacent to the next s highest degree vertices.

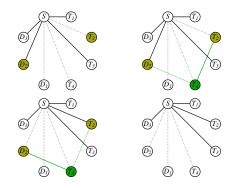
Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages.

Game plan:

 $G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$

- Start with G_1 which we know exists.
- ▶ At each stage, create a new graph G_i from G_{i-1} such that
 - G_i has degree sequence S_1 .
 - ► The vertex of degree s in G_i is adjacent to MORE of the highest degree vertices than G_{i-1}.
- After some number of iterations, the vertex of highest degree s in G_a will be adjacent to the next s highest degree vertices.
- ▶ Peel off vertex S to reveal a graph with degree sequence S_2 .

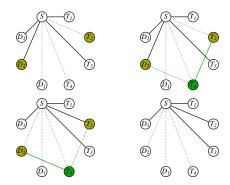
Vertices $S, T_1, \ldots, T_s, D_1, \ldots, D_k$ have degrees $s, t_1, \ldots, t_s, d_1, \ldots, d_k$.



Vertices $S, T_1, \ldots, T_s, D_1, \ldots, D_k$ have degrees $s, t_1, \ldots, t_s, d_1, \ldots, d_k$.

(a) Suppose S is not adjacent to all vertices of next highest degree $(T_1 \text{ through } T_s)$.

Therefore, there exists a T_i to which S is not adjacent and a D_j to which S is adjacent.

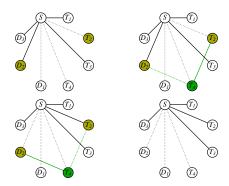


Vertices $S, T_1, \ldots, T_s, D_1, \ldots, D_k$ have degrees $s, t_1, \ldots, t_s, d_1, \ldots, d_k$.

(a) Suppose S is not adjacent to all vertices of next highest degree $(T_1 \text{ through } T_s)$.

Therefore, there exists a T_i to which S is not adjacent and a D_j to which S is adjacent.

(b) Because $\deg(T_i) \ge \deg(D_j)$, then there exists a vertex V such that T_iV is an edge and D_jV is not an edge.



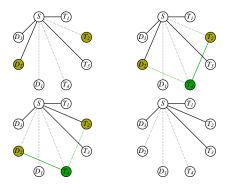
Vertices $S, T_1, \ldots, T_s, D_1, \ldots, D_k$ have degrees $s, t_1, \ldots, t_s, d_1, \ldots, d_k$.

(a) Suppose S is not adjacent to all vertices of next highest degree $(T_1 \text{ through } T_s)$.

Therefore, there exists a T_i to which S is not adjacent and a D_j to which S is adjacent.

(b) Because $\deg(T_i) \ge \deg(D_j)$, then there exists a vertex V such that T_iV is an edge and D_jV is not an edge.

(c) Replace edges SD_i and T_iV with edges ST_i and D_jV .

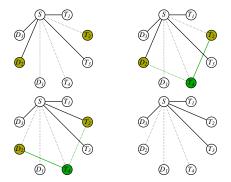


Vertices $S, T_1, \ldots, T_s, D_1, \ldots, D_k$ have degrees $s, t_1, \ldots, t_s, d_1, \ldots, d_k$.

(a) Suppose S is not adjacent to all vertices of next highest degree $(T_1 \text{ through } T_s)$.

Therefore, there exists a T_i to which S is not adjacent and a D_j to which S is adjacent.

(b) Because $\deg(T_i) \ge \deg(D_j)$, then there exists a vertex V such that T_iV is an edge and D_jV is not an edge.



(c) Replace edges SD_j and T_iV with edges ST_i and D_jV .

(d) The degree sequence of the new graph is the same. (Why?) AND S is now adjacent to more T vertices. (Why?) Repeat as necessary.