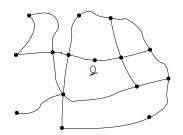
Course Notes

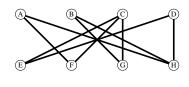
Graph Theory, Fall 2022

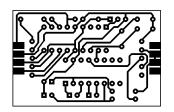
Queens College, Math 334/634

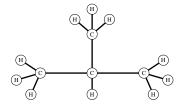
Prof. Christopher Hanusa

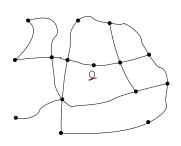
http://qc.edu/~chanusa/courses/634/22/





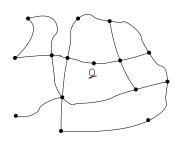






A graph is made up of dots and lines.

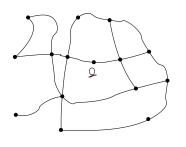
A "dot" is called a **vertex** (or **node**, **point**, **junction**)
One **vertex** — Two **vertices**.



A graph is made up of dots and lines.

A "dot" is called a **vertex** (or **node**, **point**, **junction**)
One **vertex** — Two **vertices**.

A "line" is called an **edge** (or **arc**), and always connects two vertices.



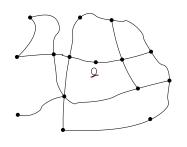
A graph is made up of dots and lines.

A "dot" is called a **vertex** (or **node**, **point**, **junction**)
One **vertex** — Two **vertices**.

A "line" is called an **edge** (or **arc**), and always connects two vertices.

A road map can be thought of as a graph.

- ▶ Represent each city or intersection as a vertex
- Roads correspond to edges.



A graph is made up of dots and lines.

A "dot" is called a **vertex** (or **node**, **point**, **junction**)
One **vertex** — Two **vertices**.

A "line" is called an **edge** (or **arc**), and always connects two vertices.

A road map can be thought of as a graph.

- ▶ Represent each city or intersection as a vertex
- Roads correspond to edges.

However, a graph is an abstract concept.

- ▶ It doesn't matter whether the edge is straight or curved.
- ▶ All we care about is which vertices are connected.

Suppose that:

Erika likes cherries and dates.

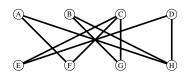
Frank likes apples and cherries.

Greg likes bananas and cherries.

Helen likes apples, bananas, dates.

Suppose that:

Erika likes cherries and dates. Frank likes apples and cherries. Greg likes bananas and cherries. Helen likes apples, bananas, dates.

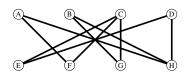


A graph can illustrate these relationships.

- ▶ Create one vertex for each person and one vertex for each fruit.
- Create an edge between person vertex v and fruit vertex w if person v likes fruit w.

Suppose that:

Erika likes cherries and dates. Frank likes apples and cherries. Greg likes bananas and cherries. Helen likes apples, bananas, dates.



A graph can illustrate these relationships.

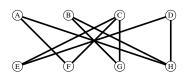
- ▶ Create one vertex for each person and one vertex for each fruit.
- Create an edge between person vertex v and fruit vertex w if person v likes fruit w.

Question. Is there a way for each person to receive a piece of fruit they like?

Answer.

Suppose that:

Erika likes cherries and dates. Frank likes apples and cherries. Greg likes bananas and cherries. Helen likes apples, bananas, dates.



A graph can illustrate these relationships.

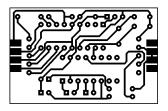
- ▶ Create one vertex for each person and one vertex for each fruit.
- Create an edge between person vertex v and fruit vertex w if person v likes fruit w.

Question. Is there a way for each person to receive a piece of fruit they like?

Answer.

Related topics: assignments, perfect matchings, counting questions.

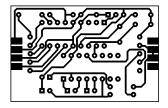
Why does a circuit board look like this?



Why does a circuit board look like this?

Question. Is graph G planar?

- If so, how can we draw it without crossings?
- ▶ If not, then how close to being planar is it?

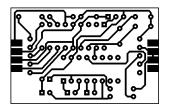


Why does a circuit board look like this?

Question. Is graph *G* planar?

- ▶ If so, how can we draw it without crossings?
- ▶ If not, then how close to being planar is it?

Related topics: planarity, non-planarity stats, graph embeddings

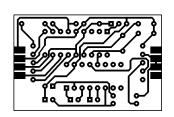


Why does a circuit board look like this?

Question. Is graph *G* planar?

- If so, how can we draw it without crossings?
- ▶ If not, then how close to being planar is it?

Related topics: planarity, non-planarity stats, graph embeddings



Also related to a circuit board:

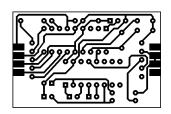
- ▶ Where to drill the holes?
- ► How to drill them as fast as possible?

Why does a circuit board look like this?

Question. Is graph *G* planar?

- ▶ If so, how can we draw it without crossings?
- ▶ If not, then how close to being planar is it?

Related topics: planarity, non-planarity stats, graph embeddings



Also related to a circuit board:

- ▶ Where to drill the holes?
- ► How to drill them as fast as possible?

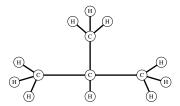
Related topics: Traveling Salesman, computer algorithms, optimization

Graphs are used in Chemistry to draw molecules. (isobutane)

Graphs are used in Chemistry to draw molecules. (isobutane)

Note:

- ► This graph is *connected*. (Not true in general.)
- ▶ There are no *cycles* in this graph.



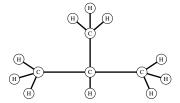
Graphs are used in Chemistry to draw molecules. (isobutane)

Note:

- ► This graph is *connected*. (Not true in general.)
- ▶ There are no *cycles* in this graph.

Connected graphs with no cycles are called trees.

Trees are some of the nicest graphs.



Graphs are used in Chemistry to draw molecules. (isobutane)

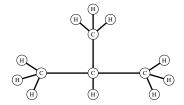
Note:

- ► This graph is *connected*. (Not true in general.)
- ▶ There are no *cycles* in this graph.

Connected graphs with no cycles are called **trees**.

Trees are some of the nicest graphs.

We will work to understand some of their properties.



▶ Building from basic principles.

- **▶** Building from basic principles.
 - ▶ Lots of definitions! Need to internalize.

- **▶** Building from basic principles.
 - ▶ Lots of definitions! Need to internalize.
 - ▶ Proofs!

- Building from basic principles.
 - ▶ Lots of definitions! Need to internalize.
 - Proofs!
- ▶ Daily homework assignments
 - ▶ Basis of in-class discussion
 - ► Feel free to work in groups

- Building from basic principles.
 - ▶ Lots of definitions! Need to internalize.
 - ► Proofs!
- Daily homework assignments
 - ▶ Basis of in-class discussion
 - ► Feel free to work in groups
- Standards-based grading
 - Approximately 15 "standards"
 - Regular assessments throughout (No midterms)
 - ► Reassessments possible

- Building from basic principles.
 - ▶ Lots of definitions! Need to internalize.
 - ► Proofs!
- Daily homework assignments
 - ▶ Basis of in-class discussion
 - ► Feel free to work in groups
- ► Standards-based grading

Grade ←→ **Learning**

- Approximately 15 "standards"
- Regular assessments throughout (No midterms)
- Reassessments possible

- Building from basic principles.
 - ▶ Lots of definitions! Need to internalize.
 - ▶ Proofs!
- Daily homework assignments
 - ▶ Basis of in-class discussion
 - ► Feel free to work in groups
- Standards-based grading

Grade ←→ **Learning**

- Approximately 15 "standards"
- ► Regular assessments throughout (No midterms)
- Reassessments possible
- ▶ NEW! Cross-listing of MATH 334 and MATH 634
 - ▶ Same in-class content
 - Undergraduates can choose 334 vs 634.
 - 634: Assessment expectations higher.
 - ▶ 634: Project expectations higher. (More later.)
 - ▶ Both count toward major. Only 634 counts toward Masters.

To do well in this class:

- ► Come to class prepared.
 - Print out and read over course notes.
 - Read sections before class.
- ► Form good study groups.
 - Discuss homework and classwork.
 - Bounce proof ideas around.
 - You will depend on this group.
- Put in the time.
 - ▶ Three credits = (at least) nine hours / week out of class.
 - ▶ Homework stresses key concepts from class; learning takes time.
- Stay in contact.
 - ▶ If you are confused, ask questions (in class and out).
 - Don't fall behind in coursework or project.
 - I need to understand your concerns.

Getting to knooooow you

Arrange yourselves into groups.

- ▶ Introduce yourself. (your name, where you are from)
- What brought you to this class?
- Fill out the front of your notecard:
 - Write your name. (Stylize if you wish.)
 - ▶ Write some words about how I might remember you & your name.
 - Draw something (anything!) in the remaining space.
- ► Exchange contact information. (phone / email / other)
- ▶ Small talk suggestion: What's been keeping you busy?

Definition. A graph G is a pair of sets (V, E), where

- ▶ *V* is the set of *vertices*.
- ightharpoonup E is the set of *edges*.

Definition. A **graph** G is a pair of sets (V, E), where

- ▶ *V* is the set of *vertices*.
 - A vertex can be anything.
- ► *E* is the set of *edges*.

Definition. A **graph** G is a pair of sets (V, E), where

- ▶ V is the set of vertices.
 - A vertex can be anything.
- ► *E* is the set of *edges*.
 - lacktriangle An edge is an unordered pair of vertices from V.

[Sometimes we will write V(G) and E(G).]

Definition. A graph G is a pair of sets (V, E), where

- ▶ *V* is the set of *vertices*.
 - A vertex can be anything.
- ► *E* is the set of *edges*.
 - ightharpoonup An edge is an unordered pair of vertices from V.

[Sometimes we will write V(G) and E(G).]

```
Example. Let G = (V, E), where V = \{v_1, v_2, v_3, v_4\}, E = \{e_1, e_2, e_3, e_4, e_5\}, and e_1 = \{v_1, v_2\}, e_2 = \{v_2, v_3\}, e_3 = \{v_1, v_3\}, e_4 = \{v_1, v_4\}, e_5 = \{v_3, v_4\}.
```

Definition. A **graph** G is a pair of sets (V, E), where

- ▶ *V* is the set of *vertices*.
 - A vertex can be anything.
- ► *E* is the set of *edges*.
 - \blacktriangleright An edge is an unordered pair of vertices from V.

[Sometimes we will write V(G) and E(G).]

```
Example. Let G = (V, E), where V = \{v_1, v_2, v_3, v_4\}, E = \{e_1, e_2, e_3, e_4, e_5\}, and e_1 = \{v_1, v_2\}, e_2 = \{v_2, v_3\}, e_3 = \{v_1, v_3\}, e_4 = \{v_1, v_4\}, e_5 = \{v_3, v_4\}.
```

▶ We often write $e_1 = v_1 v_2$ with the understanding that order does not matter.

Definition. A graph G is a pair of sets (V, E), where

- V is the set of vertices.
 - A vertex can be anything.
- ► *E* is the set of *edges*.
 - ightharpoonup An edge is an unordered pair of vertices from V.

[Sometimes we will write V(G) and E(G).]

```
Example. Let G = (V, E), where V = \{v_1, v_2, v_3, v_4\}, E = \{e_1, e_2, e_3, e_4, e_5\}, and e_1 = \{v_1, v_2\}, e_2 = \{v_2, v_3\}, e_3 = \{v_1, v_3\}, e_4 = \{v_1, v_4\}, e_5 = \{v_3, v_4\}.
```

▶ We often write $e_1 = v_1 v_2$ with the understanding that order does not matter.

Notation: # vertices $= |V| = _= _$. # edges $= |E| = _= _$.

How to talk about a graph

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are **adjacent**.

How to talk about a graph

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are adjacent.

When talking about a vertex-edge pair, we will say that v_1 is **incident** to/with e_1 when v_1 is an **endpoint** of e_1 .

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are adjacent.

When talking about a vertex-edge pair, we will say that v_1 is **incident** to/with e_1 when v_1 is an **endpoint** of e_1 .

For now, we will only consider finite, simple graphs.

- ▶ G is finite means $|V| < \infty$. (Although infinite graphs do exist.)
- ightharpoonup G is simple means that G has no multiple edges nor loops.

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are **adjacent**.

When talking about a vertex-edge pair, we will say that v_1 is **incident** to/with e_1 when v_1 is an **endpoint** of e_1 .

For now, we will only consider finite, simple graphs.

- ▶ G is finite means $|V| < \infty$. (Although infinite graphs do exist.)
- ightharpoonup G is simple means that G has no multiple edges nor loops.
 - ▶ A loop is an edge that connects a vertex to itself.

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are adjacent.

When talking about a vertex-edge pair, we will say that v_1 is **incident** to/with e_1 when v_1 is an **endpoint** of e_1 .

For now, we will only consider finite, simple graphs.

- ▶ G is finite means $|V| < \infty$. (Although infinite graphs do exist.)
- ▶ *G* is **simple** means that *G* has no multiple edges nor loops.
 - ▶ A loop is an edge that connects a vertex to itself.
 - ▶ Multiple edges occurs when the same unordered pair of vertices appears more than once in *E*.

We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**.

Similarly, we would say that edges e_1 and e_2 are **adjacent**.

When talking about a vertex-edge pair, we will say that v_1 is **incident** to/with e_1 when v_1 is an **endpoint** of e_1 .

For now, we will only consider finite, simple graphs.

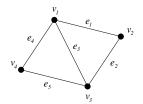
- ▶ G is finite means $|V| < \infty$. (Although infinite graphs do exist.)
- ▶ *G* is **simple** means that *G* has no multiple edges nor loops.
 - ▶ A loop is an edge that connects a vertex to itself.
 - ► Multiple edges occurs when the same unordered pair of vertices appears more than once in *E*.

When multiple edges are allowed (but not loops): called **multigraphs**. When loops (& mult. edge) are allowed: called **pseudographs**.

The degree of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

$$deg(v_1) = \underline{\hspace{1cm}}, \ deg(v_2) = \underline{\hspace{1cm}}, \ deg(v_3) = \underline{\hspace{1cm}}, \ deg(v_4) = \underline{\hspace{1cm}}.$$



The **degree** of a vertex v is the number of edges incident with v, and denoted deg(v).

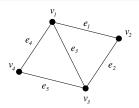
In our example,

$$deg(v_1) = \underline{\hspace{1cm}}, \ deg(v_2) = \underline{\hspace{1cm}}, \ deg(v_3) = \underline{\hspace{1cm}}, \ deg(v_4) = \underline{\hspace{1cm}}.$$

If deg(v) = 0, we call v an **isolated vertex**.

If deg(v) = 1, we call v an **end vertex** or **leaf**.

If deg(v) = k for all v, we call G a k-regular graph.



The degree of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

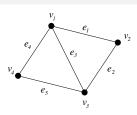
$$deg(v_1) = \underline{\hspace{1cm}}, \ deg(v_2) = \underline{\hspace{1cm}}, \ deg(v_3) = \underline{\hspace{1cm}}, \ deg(v_4) = \underline{\hspace{1cm}}.$$

If deg(v) = 0, we call v an **isolated vertex**.

If deg(v) = 1, we call v an **end vertex** or **leaf**.

If deg(v) = k for all v, we call G a k-regular graph.

The degree sum of a graph is the sum of the degrees of all vertices.



The **degree** of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

$$deg(v_1) = \underline{\hspace{1cm}}, \ deg(v_2) = \underline{\hspace{1cm}}, \ deg(v_3) = \underline{\hspace{1cm}}, \ deg(v_4) = \underline{\hspace{1cm}}.$$

If deg(v) = 0, we call v an **isolated vertex**.

If deg(v) = 1, we call v an **end vertex** or **leaf**.

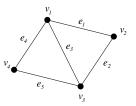
If deg(v) = k for all v, we call G a k-regular graph.

The degree sum of a graph is the sum of the degrees of all vertices.

Degree sum exploration:

Q. What is
$$deg(v_1) + deg(v_2) + deg(v_3) + deg(v_4)$$
?

$$\mathsf{A.}\ \sum_{v\in V} \mathsf{deg}(v) =$$



The **degree** of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

$$deg(v_1) = \underline{\hspace{1cm}}, \ deg(v_2) = \underline{\hspace{1cm}}, \ deg(v_3) = \underline{\hspace{1cm}}, \ deg(v_4) = \underline{\hspace{1cm}}.$$

If deg(v) = 1, we call v an **end vertex** or **leaf**.

If deg(v) = k for all v, we call G a k-regular graph.

The degree sum of a graph is the sum of the degrees of all vertices.

Degree sum exploration:

Q. What is
$$deg(v_1) + deg(v_2) + deg(v_3) + deg(v_4)$$
?

Q. How many edges in G?

A.
$$\sum_{v \in V} \deg(v) =$$

$$A. m =$$

The degree of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

$$deg(v_1) = \underline{\hspace{1cm}}, \ deg(v_2) = \underline{\hspace{1cm}}, \ deg(v_3) = \underline{\hspace{1cm}}, \ deg(v_4) = \underline{\hspace{1cm}}.$$

If deg(v) = 0, we call v an **isolated vertex**.

If deg(v) = 1, we call v an **end vertex** or **leaf**.

If deg(v) = k for all v, we call G a k-regular graph.

The degree sum of a graph is the sum of the degrees of all vertices.

Degree sum exploration:

Q. What is
$$deg(v_1) + deg(v_2) + deg(v_3) + deg(v_4)$$
?

 \mathbb{Q} . How many edges in G?

A.
$$\sum_{v \in V} \deg(v) = \frac{A. m}{Q}$$
. How are these related?

The **degree** of a vertex v is the number of edges incident with v, and denoted deg(v).

In our example,

$$deg(v_1) = \underline{\hspace{1cm}}, deg(v_2) = \underline{\hspace{1cm}}, deg(v_3) = \underline{\hspace{1cm}},$$

If deg(v) = 0, we call v an **isolated vertex**.

If deg(v) = 1, we call v an **end vertex** or **leaf**.

If deg(v) = k for all v, we call G a k-regular graph.

The degree sum of a graph is the sum of the degrees of all vertices.

Degree sum exploration:

Q. What is
$$deg(v_1) + deg(v_2) + Q$$
. How many edges in G ? $deg(v_3) + deg(v_4)$?

A.
$$\sum_{v \in V} \deg(v) =$$
 A. $m =$ Q. How are these related? Coincidence?

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Proof. We count the number of vertex-edge incidences in two ways.

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m.$$

Proof. We count the number of vertex-edge incidences in two ways.

Vertex-centric: For one v, how many v-e incidences are there? ____.

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Proof. We count the number of vertex-edge incidences in two ways.

Vertex-centric: For one v, how many v-e incidences are there? ____. So the total number of vertex-edge incidences in G is _____.

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Proof. We count the number of vertex-edge incidences in two ways.

Vertex-centric: For one v, how many v-e incidences are there? ____. So the total number of vertex-edge incidences in *G* is ______.

Edge-centric: For one e, how many v-e incidences are there? _____.

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Proof. We count the number of vertex-edge incidences in two ways.

Vertex-centric: For one v, how many v-e incidences are there? ____. So the total number of vertex-edge incidences in *G* is ______.

Edge-centric: For one e, how many v-e incidences are there? _____.

So the total number of vertex-edge incidences in G is _______

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m.$$

Proof. We count the number of vertex-edge incidences in two ways.

Vertex-centric: For one v, how many v-e incidences are there? ____. So the total number of vertex-edge incidences in G is _____.

Edge-centric: For one e, how many v-e incidences are there? _____. So the total number of vertex-edge incidences in G is ______.

Since we have counted the same quantity in two different ways, the two values are equal. \Box

Theorem 1.1.1.
$$\sum_{v \in V} \deg(v) = 2m$$
.

Proof. We count the number of vertex-edge incidences in two ways.

Vertex-centric: For one v, how many v-e incidences are there? ____. So the total number of vertex-edge incidences in G is _____.

Edge-centric: For one e, how many v-e incidences are there? _____. So the total number of vertex-edge incidences in G is ______.

Since we have counted the same quantity in two different ways, the two values are equal. \Box

Corollary: The degree sum of a graph is always even.

Definition. The **degree sequence** for a graph G is the list of the degrees of its vertices in weakly decreasing order.

Definition. The degree sequence for a graph G is the list of the degrees of its vertices in weakly decreasing order.

In our example above, the degree sequence is: ______.

Definition. The degree sequence for a graph G is the list of the degrees of its vertices in weakly decreasing order.

In our example above, the degree sequence is: ______.

Duh. Every simple graph has a degree sequence.

Definition. The **degree sequence** for a graph G is the list of the degrees of its vertices in weakly decreasing order.

In our example above, the degree sequence is: ______.

Duh. Every simple graph has a degree sequence.

Question. Does every sequence have a simple graph?

Answer.

Definition. A weakly decreasing sequence of non-negative numbers $\mathcal S$ is **graphic** if there exists a graph that has $\mathcal S$ as its degree sequence.

Definition. A weakly decreasing sequence of non-negative numbers \mathcal{S} is **graphic** if there exists a graph that has \mathcal{S} as its degree sequence.

Question. How can we tell if a sequence S is graphic?

Definition. A weakly decreasing sequence of non-negative numbers \mathcal{S} is **graphic** if there exists a graph that has \mathcal{S} as its degree sequence.

Question. How can we tell if a sequence S is graphic?

ightharpoonup Find a graph with degree sequence S.

Definition. A weakly decreasing sequence of non-negative numbers \mathcal{S} is **graphic** if there exists a graph that has \mathcal{S} as its degree sequence.

Question. How can we tell if a sequence S is graphic?

ightharpoonup Find a graph with degree sequence \mathcal{S} .

OR: Use the **Havel–Hakimi algorithm** in Theorem 1.1.2.

Definition. A weakly decreasing sequence of non-negative numbers \mathcal{S} is **graphic** if there exists a graph that has \mathcal{S} as its degree sequence.

Question. How can we tell if a sequence S is graphic?

ightharpoonup Find a graph with degree sequence S.

OR: Use the **Havel–Hakimi algorithm** in Theorem 1.1.2.

▶ Initialization. Start with Sequence S_1 .

Definition. A weakly decreasing sequence of non-negative numbers \mathcal{S} is **graphic** if there exists a graph that has \mathcal{S} as its degree sequence.

Question. How can we tell if a sequence S is graphic?

ightharpoonup Find a graph with degree sequence S.

OR: Use the **Havel–Hakimi algorithm** in Theorem 1.1.2.

- ▶ Initialization. Start with Sequence S_1 .
- ▶ Step 1. Remove the first number (call it s).

Definition. A weakly decreasing sequence of non-negative numbers \mathcal{S} is **graphic** if there exists a graph that has \mathcal{S} as its degree sequence.

Question. How can we tell if a sequence S is graphic?

 \blacktriangleright Find a graph with degree sequence \mathcal{S} .

OR: Use the Havel-Hakimi algorithm in Theorem 1.1.2.

- ▶ Initialization. Start with Sequence S_1 .
- ▶ Step 1. Remove the first number (call it s).
- ▶ Step 2. Subtract 1 from each of the next s numbers in the list.

Definition. A weakly decreasing sequence of non-negative numbers \mathcal{S} is **graphic** if there exists a graph that has \mathcal{S} as its degree sequence.

Question. How can we tell if a sequence S is graphic?

 \blacktriangleright Find a graph with degree sequence \mathcal{S} .

OR: Use the Havel-Hakimi algorithm in Theorem 1.1.2.

- ▶ Initialization. Start with Sequence S_1 .
- ▶ Step 1. Remove the first number (call it s).
- ▶ Step 2. Subtract 1 from each of the next s numbers in the list.
- Step 3. Reorder the list if necessary into non-increasing order. Call the resulting list Sequence S_2 .

Definition. A weakly decreasing sequence of non-negative numbers \mathcal{S} is **graphic** if there exists a graph that has \mathcal{S} as its degree sequence.

Question. How can we tell if a sequence S is graphic?

ightharpoonup Find a graph with degree sequence S.

OR: Use the Havel-Hakimi algorithm in Theorem 1.1.2.

- ▶ Initialization. Start with Sequence S_1 .
- \triangleright Step 1. Remove the first number (call it s).
- ▶ Step 2. Subtract 1 from each of the next s numbers in the list.
- Step 3. Reorder the list if necessary into non-increasing order. Call the resulting list Sequence S_2 .

Theorem 1.1.2. Sequence S_1 is graphic iff Sequence S_2 is graphic.

Definition. A weakly decreasing sequence of non-negative numbers \mathcal{S} is **graphic** if there exists a graph that has \mathcal{S} as its degree sequence.

Question. How can we tell if a sequence S is graphic?

 \blacktriangleright Find a graph with degree sequence \mathcal{S} .

OR: Use the Havel-Hakimi algorithm in Theorem 1.1.2.

- ▶ Initialization. Start with Sequence S_1 .
- ightharpoonup Step 1. Remove the first number (call it s).
- ▶ Step 2. Subtract 1 from each of the next s numbers in the list.
- ▶ Step 3. Reorder the list if necessary into non-increasing order. Call the resulting list Sequence S_2 .

Theorem 1.1.2. Sequence S_1 is graphic iff Sequence S_2 is graphic.

- lterate this algorithm until either:
 - (a) It is easy to see S_2 is graphic. (b) S_2 has negative numbers.

Definition. A weakly decreasing sequence of non-negative numbers \mathcal{S} is **graphic** if there exists a graph that has \mathcal{S} as its degree sequence.

Question. How can we tell if a sequence S is graphic?

 \blacktriangleright Find a graph with degree sequence \mathcal{S} .

OR: Use the Havel-Hakimi algorithm in Theorem 1.1.2.

- ▶ Initialization. Start with Sequence S_1 .
- ▶ Step 1. Remove the first number (call it s).
- ▶ Step 2. Subtract 1 from each of the next s numbers in the list.
- Step 3. Reorder the list if necessary into non-increasing order. Call the resulting list Sequence S_2 .

Theorem 1.1.2. Sequence S_1 is graphic iff Sequence S_2 is graphic.

- ▶ Iterate this algorithm until either:
 - (a) It is easy to see S_2 is graphic. (b) S_2 has negative numbers.

Examples: 7765333110 and 6644442

Proof of the Havel-Hakimi algorithm

Notation: Define the degree sequences to be:

$$S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$$

 $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic **iff** Sequence S_2 is graphic.

Proof of the Havel-Hakimi algorithm

Notation: Define the degree sequences to be:

$$S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$$

 $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic **iff** Sequence S_2 is graphic.

Proof. (S_2 graphic $\Rightarrow S_1$ graphic)

Notation: Define the degree sequences to be:

$$S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$$

 $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic **iff** Sequence S_2 is graphic.

Proof. (S_2 graphic $\Rightarrow S_1$ graphic) Suppose that S_2 is graphic. Therefore.

Notation: Define the degree sequences to be:

$$S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$$

 $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic iff Sequence S_2 is graphic.

Proof. (S_2 graphic $\Rightarrow S_1$ graphic) Suppose that S_2 is graphic. Therefore, there exists a graph G_2 with degree sequence S_2 .

Notation: Define the degree sequences to be:

$$S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$$

 $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic **iff** Sequence S_2 is graphic.

Proof. (S_2 graphic $\Rightarrow S_1$ graphic) Suppose that S_2 is graphic. Therefore, there exists a graph G_2 with degree sequence S_2 . We will construct a graph G_1 that has S_1 as its degree sequence.

Notation: Define the degree sequences to be:

$$S_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$$

 $S_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$

Theorem. Sequence S_1 is graphic **iff** Sequence S_2 is graphic.

Proof. (S_2 graphic $\Rightarrow S_1$ graphic) Suppose that S_2 is graphic. Therefore, there exists a graph G_2 with degree sequence S_2 . We will construct a graph G_1 that has S_1 as its degree sequence.

Question: Can this argument work in reverse?

Proof. (S_1 graphic $\Rightarrow S_2$ graphic)

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore,

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 .

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages.

$$G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$$

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages.

Game plan:

$$G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$$

 \triangleright Start with G_1 which we know exists.

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages.

$$G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$$

- \triangleright Start with G_1 which we know exists.
- \blacktriangleright At each stage, create a new graph G_i from G_{i-1} such that
 - ▶ G_i has degree sequence S_1 .

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages.

$$G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$$

- \triangleright Start with G_1 which we know exists.
- \blacktriangleright At each stage, create a new graph G_i from G_{i-1} such that
 - $ightharpoonup G_i$ has degree sequence S_1 .
 - ► The vertex of degree s in G_i is adjacent to MORE of the highest degree vertices than G_{i-1}.

Proof. (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages.

$$G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$$

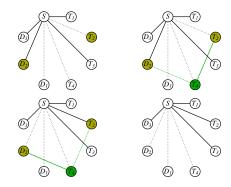
- \triangleright Start with G_1 which we know exists.
- \blacktriangleright At each stage, create a new graph G_i from G_{i-1} such that
 - $ightharpoonup G_i$ has degree sequence S_1 .
 - ► The vertex of degree s in G_i is adjacent to MORE of the highest degree vertices than G_{i-1}.
- After some number of iterations, the vertex of highest degree s in G_a will be adjacent to the next s highest degree vertices.

Proof. (\mathcal{S}_1 graphic $\Rightarrow \mathcal{S}_2$ graphic) Suppose that \mathcal{S}_1 is graphic. Therefore, there exists a graph G_1 with degree sequence \mathcal{S}_1 . We will construct a graph with degree sequence \mathcal{S}_2 in stages.

$$G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$$

- \triangleright Start with G_1 which we know exists.
- \blacktriangleright At each stage, create a new graph G_i from G_{i-1} such that
 - $ightharpoonup G_i$ has degree sequence S_1 .
 - ▶ The vertex of degree s in G_i is adjacent to MORE of the highest degree vertices than G_{i-1} .
- After some number of iterations, the vertex of highest degree s in G_a will be adjacent to the next s highest degree vertices.
- ▶ Peel off vertex S to reveal a graph with degree sequence S_2 .

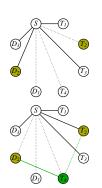
Vertices $S, T_1, \ldots, T_s, D_1, \ldots, D_k$ have degrees $s, t_1, \ldots, t_s, d_1, \ldots, d_k$.

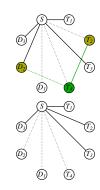


Vertices $S, T_1, \ldots, T_s, D_1, \ldots, D_k$ have degrees $s, t_1, \ldots, t_s, d_1, \ldots, d_k$.

(a) Suppose S is not adjacent to all vertices of next highest degree $(T_1 \text{ through } T_s)$.

Therefore, there exists a T_i to which S is not adjacent and a D_j to which S is adjacent.



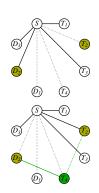


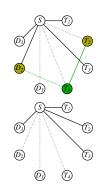
Vertices $S, T_1, \ldots, T_s, D_1, \ldots, D_k$ have degrees $s, t_1, \ldots, t_s, d_1, \ldots, d_k$.

(a) Suppose S is not adjacent to all vertices of next highest degree $(T_1 \text{ through } T_s)$.

Therefore, there exists a T_i to which S is not adjacent and a D_j to which S is adjacent.

(b) Because $\deg(T_i) \geq \deg(D_j)$, then there exists a vertex V such that T_iV is an edge and D_jV is not an edge.



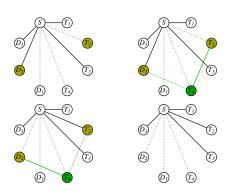


Vertices $S, T_1, \ldots, T_s, D_1, \ldots, D_k$ have degrees $s, t_1, \ldots, t_s, d_1, \ldots, d_k$.

(a) Suppose S is not adjacent to all vertices of next highest degree $(T_1 \text{ through } T_s)$.

Therefore, there exists a T_i to which S is not adjacent and a D_j to which S is adjacent.

(b) Because $\deg(T_i) \geq \deg(D_j)$, then there exists a vertex V such that T_iV is an edge and D_jV is not an edge.



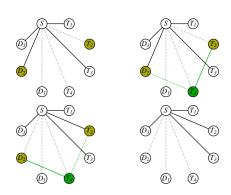
(c) Replace edges SD_i and T_iV with edges ST_i and D_iV .

Vertices $S, T_1, \ldots, T_s, D_1, \ldots, D_k$ have degrees $s, t_1, \ldots, t_s, d_1, \ldots, d_k$.

(a) Suppose S is not adjacent to all vertices of next highest degree $(T_1 \text{ through } T_s)$.

Therefore, there exists a T_i to which S is not adjacent and a D_j to which S is adjacent.

(b) Because $\deg(T_i) \geq \deg(D_j)$, then there exists a vertex V such that T_iV is an edge and D_jV is not an edge.



- (c) Replace edges SD_i and T_iV with edges ST_i and D_iV .
- (d) The degree sequence of the new graph is the same. (Why?) AND S is now adjacent to more T vertices. (Why?) Repeat as necessary.