Connectivity — §1.3

Connectivity

Definition. A graph G is **connected** if for every pair of vertices a and b in G, there is a **path from** a **to** b **in** G.

That is, there exists a sequence of <u>distinct</u> vertices v_0, v_1, \ldots, v_k such that $v_0 = a$, $v_k = b$, and $v_{i-1}v_i$ is an edge of G for all i, $1 \le i \le k$.

Lemma A. IF there is a path from vertex a to vertex b in a and a path from vertex a to vertex a in a.

THEN there is a path from vertex a to vertex a in a.

Proof. By hypothesis,

- ► There exist
- \blacktriangleright If all the vertices are distinct, path R:
- ▶ If not all vertices are distinct, then choose the *first* vertex v_p in P that is also a vertex w_q in Q.

Connectivity — §1.3

Lemmas A and B

Lemma B. Let G be a connected graph. Suppose G contains a cycle C and e is an edge of C. The graph $H = G \setminus e$ is connected.

Proof. Let v and w be two vertices of H.

We need to show that there is a path from v to w in H.

Because G is connected, there exists a path $P: v \rightarrow w$ in G. If P does not pass through e, then ______.

If P does pass through e = xy, break up P as P_1eP_2 , where $P_1: v \to x$, $P_2: y \to w$. These are both paths in H.

Write the cycle C as $C = xz_1z_2 \cdots z_kyx$. Therefore, there is a path $Q: x \to y = xz_1z_2 \cdots z_ky$ in H.

Claim: There is a path from v to w in H. Why?

Connectivity and edges

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof. Induction on the number of edges of *G*.

- ▶ **Base Case.** If *G* is connected and has fewer than three edges, then *G* equals either:
- ► Inductive Step.

Inductive hypothesis:

 $p \le q+1$ holds for all connected graphs with $k \ge 3$ edges.

We want to show:

 $p \le q + 1$ holds for all connected graphs with

Break into cases, depending on whether G contains a cycle:

(next page)

Trees — §1.3

Connectivity and edges

ightharpoonup Case 1. There is a cycle C in G.

Use Lemma B. After removing an edge from C,

ightharpoonup Case 2. There is no cycle in G.

Find a path P in G that can not be extended.

Claim: The endpoints of *P*, *a* and *b*, are leaves of *G*.

Remove a and its incident edge to form a new graph H.

Can we apply the inductive hypothesis to H?

★ Important Induction Item: Always remove edges. ★

Trees — §1.3

Trees and forests

Definition. A tree is a connected graph that contains no cycles. Definition. A forest is a graph that contains no cycle.

These definitions imply: (Fill in the blanks)

- 1. Every connected component of a forest ______
- 2. A connected forest ______.
- 3. A subgraph of a forest ______.
- 4. A subgraph of a tree _____.
- 5. Every tree is a forest.

Trees are the smallest connected graphs; the following theorems show this and help classify graphs that are trees.

Thm 1.3.2, 1.3.3: Let G be a connected graph with p vertices and q edges. Then, G is a tree \iff p = q + 1.

Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.

Proof of Theorems 1.3.2 and 1.3.3

Thm 1.3.2,1.3.3: Let G be connected with p vert's and q edges. Then, G is a tree $\iff p = q + 1$.

Proof. (\Rightarrow) Use reasoning like Theorem 1.3.1:

Remove leaves one by one. Every time we remove a leaf,

 (\Leftarrow) Proof by contradiction.

Suppose that G is connected and not a tree. Want to show: $p \neq q + 1$.

A graph that is connected and is not a tree ______.

By Lemma B, remove an edge from this cycle to find a graph H with ____ vertices and ____ edges.

Theorem 1.3.1 applied to H implies that $p \leq (q-1)+1$, so $p \leq q$. Therefore $p \neq q+1$.

Proof of Theorem 1.3.5

Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.

(\Rightarrow) Suppose that G is a tree. Then G is connected, so for all $v_1, v_2 \in V$, there exists at least one path between v_1 and v_2 . Suppose that there are two paths, $P_1 = v_1 u_1 u_2 \cdots u_n v_2$ and $P_2 = v_1 w_1 w_2 \cdots w_m v_2$.

 (\Leftarrow) Suppose G is not a tree.

Either (a) or (b)

- (a) There exist two vertices v_1 and v_2 with no path between them.
- (b) For v_1 , v_2 in a cycle, there exist two paths between v_1 and v_2 .

In both cases, it is not the case that between each pair of vertices, there exists exactly one path.

Trees — §1.3

Related theorems

Definition. A bridge is an edge e such that its removal disconnects G.

Theorem 2.4.1. Suppose that G is a connected. Then G is a tree \iff Every edge of G is a bridge.

Proof. (\Rightarrow) Let e = vw be the edge of a tree G. The graph $G \setminus e$ is no longer connected because we removed from G its one path between v and w.

(\Leftarrow) Let G be a connected graph with a cycle C. The removal of any edge in C does not disconnect the graph.

Theorem 3.2.1. A regular graph of even degree has no bridge.

Proof. Let G be a regular graph of even degree with a bridge e = vw.