Connectivity

Definition. A graph G is connected if for every pair of vertices a and b in G, there is a path from a to b in G.
That is, there exists a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{0}=a, v_{k}=b$, and $v_{i-1} v_{i}$ is an edge of G for all $i, 1 \leq i \leq k$.

Lemma A. IF there is a path from vertex a to vertex b in G and a path from vertex b to vertex c in G, THEN there is a path from vertex a to vertex c in G.

Proof. By hypothesis,

- There exist
- If all the vertices are distinct, path R :
- If not all vertices are distinct, then choose the first vertex v_{p} in P that is also a vertex w_{q} in Q.

Lemmas A and B

Lemma B. Let G be a connected graph. Suppose G contains a cycle C and e is an edge of C. The graph $H=G \backslash e$ is connected.
Proof. Let v and w be two vertices of H.
We need to show that there is a path from v to w in H.
Because G is connected, there exists a path $P: v \rightarrow w$ in G. If P does not pass through e, then \qquad
If P does pass through $e=x y$, break up P as $P_{1} e P_{2}$, where $P_{1}: v \rightarrow x, P_{2}: y \rightarrow w$. These are both paths in H.

Write the cycle C as $C=x z_{1} z_{2} \cdots z_{k} y x$.
Therefore, there is a path $Q: x \rightarrow y=x z_{1} z_{2} \cdots z_{k} y$ in H.
Claim: There is a path from v to w in H. Why?

Connectivity and edges

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \leq q+1$.
Proof. Induction on the number of edges of G.

- Base Case. If G is connected and has fewer than three edges, then G equals either:
- Inductive Step.

Inductive hypothesis:
$p \leq q+1$ holds for all connected graphs with $k \geq 3$ edges.
We want to show:
$p \leq q+1$ holds for all connected graphs with
Break into cases, depending on whether G contains a cycle:

Connectivity and edges

- Case 1. There is a cycle C in G.

Use Lemma B. After removing an edge from C,

- Case 2. There is no cycle in G.

Find a path P in G that can not be extended.
Claim: The endpoints of P, a and b, are leaves of G.

Remove a and its incident edge to form a new graph H.
Can we apply the inductive hypothesis to H ?
\star Important Induction Item: Always remove edges.

Trees and forests

Definition. A tree is a connected graph that contains no cycles.
Definition. A forest is a graph that contains no cycle.
These definitions imply: (Fill in the blanks)

1. Every connected component of a forest \qquad .
2. A connected forest \qquad .
3. A subgraph of a forest \qquad .
4. A subgraph of a tree \qquad .
5. Every tree is a forest.

Trees are the smallest connected graphs; the following theorems show this and help classify graphs that are trees.

Thm 1.3.2, 1.3.3: Let G be a connected graph with p vertices and q edges. Then, $\quad G$ is a tree $\Longleftrightarrow p=q+1$.
Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.

Proof of Theorems 1.3.2 and 1.3.3

Thm 1.3.2,1.3.3: Let G be connected with p vert's and q edges. Then,

$$
G \text { is a tree } \Longleftrightarrow p=q+1 .
$$

Proof. (\Rightarrow) Use reasoning like Theorem 1.3.1:
Remove leaves one by one. Every time we remove a leaf,
(\Leftarrow) Proof by contradiction.
Suppose that G is connected and not a tree. Want to show: $p \neq q+1$.
A graph that is connected and is not a tree \qquad .
By Lemma B, remove an edge from this cycle to find a graph H with \qquad vertices and \qquad edges.
Theorem 1.3.1 applied to H implies that $p \leq(q-1)+1$, so $p \leq q$.
Therefore $p \neq q+1$.

Proof of Theorem 1.3.5

Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.
(\Rightarrow) Suppose that G is a tree. Then G is connected, so for all $v_{1}, v_{2} \in V$, there exists at least one path between v_{1} and v_{2}. Suppose that there are two paths, $P_{1}=v_{1} u_{1} u_{2} \cdots u_{n} v_{2}$ and $P_{2}=v_{1} w_{1} w_{2} \cdots w_{m} v_{2}$.
(\Leftarrow) Suppose G is not a tree.
Either (a)
or (b)
(a) There exist two vertices v_{1} and v_{2} with no path between them.
(b) For v_{1}, v_{2} in a cycle, there exist two paths between v_{1} and v_{2}.

In both cases, it is not the case that between each pair of vertices, there exists exactly one path.

Related theorems

Definition. A bridge is an edge e such that its removal disconnects G.
Theorem 2.4.1. Suppose that G is a connected. Then G is a tree \Longleftrightarrow Every edge of G is a bridge.

Proof. (\Rightarrow) Let $e=v w$ be the edge of a tree G.
The graph $G \backslash e$ is no longer connected because we removed from G its one path between v and w.
(\Leftarrow) Let G be a connected graph with a cycle C.
The removal of any edge in C does not disconnect the graph.
Theorem 3.2.1. A regular graph of even degree has no bridge.
Proof. Let G be a regular graph of even degree with a bridge $e=v w$.

